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The (strong) Bruhat order on Sn

Sn: permutations of {1, . . . , n}

Inv(u): the set of all inversions
(a, b) of u such that a < b and
u(a) > u(b)

ℓ(u): count of inversions in u

tab swaps the numbers in
positions a, b (not values a, b)

Covering relation: u ⋖ v if
v = utab and ℓ(v) = ℓ(u) + 1

Interval [u,w ]: {v | u ≤ v ≤ w}

213 132

231 312

123

321
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Edge weights

Definition

For u ⋖ v and v = utab, the weight m(u ⋖ v) is xa + xa+1 + · · ·+ xb−1.

Example

Since 312 = 213t13, we have m(213⋖ 312) = x1 + x2.

213 132

231 312

123

321

x1 x2

x2

x1 x2

x1
x1 + x2x1 + x2
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Chain weights

Definition

Let u0 ≤ uℓ and C = (u0 ⋖ u1 ⋖ · · ·⋖ uℓ) be a saturated chain of [u0, uℓ].
Define the weight mC (x) of the chain C by

∏ℓ
i=1m(ui−1 ⋖ ui ).

Example

For [213, 321], the weight of the saturated chain 213⋖ 312⋖ 321 is
(x1 + x2) · x2.

213 132

231 312

123

321

x1 x2

x2

x1 x2

x1
x1 + x2x1 + x2
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Postnikov–Stanley polynomials

Definition (Postnikov–Stanley ’09)

For u ≤ w in the Bruhat order on Sn, the skew dual Schubert polynomial
or Postnikov–Stanley polynomial Dw

u is defined by

Dw
u =

1

(ℓ(w)− ℓ(u))!

∑
C :u=u0⋖u1⋖···⋖uℓ=w

mC (x).

Example

D321
213 = 1

2!(x1x2 + (x1 + x2) · x2).

Definition
(Bernstein–Gelfand–Gelfand ’73)

Dw
id is called a dual Schubert

polynomial.
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Dual Schubert polynomials

Let I be an indexing set, and let {fa}a∈I be a collection of homogeneous
polynomials so that, for each n, its projection to C[x1, . . . , xn] forms a
basis for that ring after removing nonzero elements.

Definition

Collection {fa} is dual to collection {ga} if∑
a fa(x1, x2, . . . )ga(y1, y2, . . . ) = ex1y1+x2y2+··· where xi := yi − yi+1.

Theorem (Postnikov–Stanley ’09)

The Schubert polynomials {Sw}w∈S∞ are dual to the polynomials
{Dw

id}w∈S∞ .
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Saturated Newton polytope (SNP)
For a tuple α = (α1, . . . , αn) ∈ Zn

≥0, let x
α := xα1

1 · · · xαn
n .

Definition

The support supp(f ) of f =
∑

α∈Zn
≥0

cαx
α

is the set of vectors α such that cα ̸= 0.
The Newton polytope Newton(f ) is the
convex hull of supp(f ) in Rn.

Example

D321
213 = x1x2 +

1
2x

2
2 = x (1,1) + 1

2x
(0,2).

Newton(D321
213 ) is the segment from (1, 1)

to (0, 2).

213 132

231 312

123

321

x1 x2

x2

x1 x2

x1
x1 + x2x1 + x2

Definition (Monical–Tokcan–Yong ’19)

The polynomial f has saturated Newton polytope (SNP) if supp(f ) is the
set of integer points in Newton(f ).
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SNP in algebraic combinatorics

Theorem (Rado ’52)

Schur polynomials have SNP.

Theorem (Fink–Mézśaros–St. Dizier ’18)

Key polynomials and Schubert polynomials have SNP.

Theorem (Monical–Tokcan–Yong ’19)

Cycle index polynomials and symmetric Macdonald polynomials have SNP.

Theorem (Castillo–Cid Ruiz–Mohammadi–Montaño ’19)

Double Schubert polynomials have SNP.

Theorem (Huh–Matherne–Mészáros–St. Dizier ’19; An–T.–Zhang
’24)

Dual Schubert polynomials have SNP.
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Chain weights have SNP

Definition (Postnikov–Stanley ’09)

Dw
u =

1

(ℓ(w)− ℓ(u))!

∑
C :u=u0⋖u1⋖···⋖uℓ=w

mC (x).

Proposition (An–T.–Zhang ’24)

Any product of linear factors in x1, . . . , xn with all coefficients nonnegative
has SNP.

In particular, each chain weight mC (x) has SNP.
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Single-chain Newton polytope (SCNP)

Definition (An–T.–Zhang ’24)

Dw
u has single-chain Newton polytope (SCNP) if there exists a saturated

chain C in the interval [u,w ] such that

supp(mC ) = supp(Dw
u ).

We call such a C a dominant chain of the interval [u,w ].

Proposition (An–T.–Zhang ’24)

If Dw
u has SCNP, then Dw

u has SNP.
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Example and nonexample of SCNP

Example

D321
213 = 1

2!(x1x2 + (x1 + x2) · x2) has SCNP.

C := (213⋖ 312⋖ 321)

mC = (x1 + x2) · x2
supp(mC ) = supp(D321

213 )

213 132

231 312

123

321

x1 x2

x2

x1 x2

x1
x1 + x2x1 + x2

Example

D4231
1324 does not have SCNP.
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Dual Schubert polynomials have SCNP

Definition (An–T.–Zhang ’24)

A saturated chain u = w0 ⋖w1 ⋖w2 ⋖ · · ·⋖wℓ = w is greedy if it satisfies
the following for all i ∈ [ℓ]: writing wi−1tab = wi for a < b, there does not
exist w ′

i−1 ⋖ wi with w ′
i−1 ∈ [u,w ] such that

w ′
i−1tab′ = wi for b

′ > b, or w ′
i−1ta′b = wi for a

′ < a.

Example

In [123, 321],
123⋖ 132⋖ 231⋖ 321 is greedy.
123⋖ 213⋖ 312⋖ 321 is also greedy.
123⋖ 213⋖ 231⋖ 321 is not greedy. 213 132

231 312

123

321

x1 x2

x2

x1 x2

x1
x1 + x2x1 + x2
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Dual Schubert polynomials have SCNP (2)

Definition (An–T.–Zhang ’24)

The global weight GW(w) of w ∈ Sn is

GW(w) =
∏

(a,b)∈Inv(w)

(xa + xa+1 + · · ·+ xb−1).

Example

Inv(231) = {(1, 3), (2, 3)}, GW(231) = (x1 + x2) · x2.

Theorem (An–T.–Zhang ’24)

For all w ∈ Sn, the dual Schubert polynomial Dw has SCNP. Moreover,
every greedy chain of [id,w ] is a dominant chain of Dw , and

supp(Dw ) = supp(GW(w)) =
∑

(a,b)∈Inv(w)

{ea, ea+1, . . . , eb−1}.
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Generalized permutahedra
A standard permutahedron is the convex hull in Rn of (0, 1, . . . , n− 1) and
all permutations of its entries. A generalized permutahedron Pz

n ({zI}),
parameterized by collections of real numbers {zI} for I ⊆ [n], is given by

Pz
n ({zI}) =

{
t ∈ Rn :

∑
i∈I

ti ≥ zI for I ̸= [n],
n∑

i=1

ti = z[n]

}
.

Theorem (Postnikov ’05)

A polytope is a generalized permutahedron if and only if every edge is
parallel to a vector ei − ej .

Theorem (An–T.–Zhang ’24)

For w ∈ Sn, Newton(D
w ) is a generalized permutahedron with

zI =
∑

(a,b)∈Inv(w)

1I⊇{a,a+1...,b−1}.
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Matroid polytopes

Matroid polytopes, a special type of Newton polytope, were heavily used
by Castillo, Cid Ruiz, Mohammadi, and Montaño to prove that double
Schubert polynomials have SNP and characterize their Newton polytopes.

Definition

A matroid M = (E ,B) consists of a finite set E and a nonempty collection
of subsets B of E , which satisfy the basis exchange axiom: if B1,B2 ∈ B
and b1 ∈ B1 \ B2, then there exists b2 ∈ B2 \ B1 such that
B1 \ {b1} ∪ {b2} ∈ B.

Definition

The matroid polytope P(M) of a matroid M = ([n],B) is

P(M) = conv({ζB : B ∈ B}),

where ζB = (1i∈B)
n
i=1 denotes the indicator vector of B.
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Matroid polytopes as generalized permutahedra

Proposition (Ardila–Benedetti–Doker ’08)

Matroid polytopes P(M) are generalized permutahedra with

zI = rM([n])− rM([n] \ I ),

where rM(S) = max{#(S ∩ B) : B ∈ B}.

Definition

For 1 ≤ a < b ≤ n, let Mab = ([n],B) be the matroid with
B = {{a}, {a+ 1}, . . . , {b − 1}}.

The motivation for defining Mab is the fact that

P(Mab) = conv{ea, ea+1, . . . , eb−1} = Newton(xa + xa+1 + · · ·+ xb−1).

Also by the proposition, we have P(Mab) = Pz
n ({1I⊇{a,a+1,...,b−1}}).
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Theorem (An–T.–Zhang ’24)

For w ∈ Sn, Newton(D
w ) is a generalized permutahedron with

zI =
∑

(a,b)∈Inv(w)

1I⊇{a,a+1...,b−1}

for all I ⊆ [n].

Newton(Dw ) =
∑

(a,b)∈Inv(w)

Newton(xa + xa+1 + · · ·+ xb−1)

=
∑

(a,b)∈Inv(w)

P(Mab)

=
∑

(a,b)∈Inv(w)

Pz
n ({1I⊇{a,a+1,...,b−1}})

= Pz
n

({ ∑
(a,b)∈Inv(w)

1I⊇{a,a+1,...,b−1}

})
.
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Vertices of Newton polytopes

Theorem (An–T.–Zhang ’24)

The point α ∈ Zn
≥0 is a vertex of Newton(Dw ) if and only if xα has a

coefficient of 1 in GW(w).

Theorem (An–T.–Zhang ’24)

Given a product q of linear factors in x1, x2, . . . , xn with all coefficients 1,
the point α ∈ Zn

≥0 is a vertex of Newton(q) if and only if xα has a
coefficient of 1 in q.

Example

q = (x1 + x2)(x2 + x3)(x1 + x3)(x1 + x2 + x3)

= x31x2 + x31x3 + 2x21x
2
2 + 4x21x2x3 + 2x21x

2
3

+ x1x
3
2 + 4x1x

2
2x3 + 4x1x2x

2
3 + x1x

3
3 + x32x3 + 2x22x

2
3 + x2x

3
3

Vertices:{(3, 1, 0), (3, 0, 1), (1, 3, 0), (1, 0, 3), (0, 3, 1), (0, 1, 3)}

An, Tung, and Zhang Postnikov–Stanley Polynomials June 6, 2025 18 / 33



Vertices of Newton polytopes

Theorem (An–T.–Zhang ’24)

The point α ∈ Zn
≥0 is a vertex of Newton(Dw ) if and only if xα has a

coefficient of 1 in GW(w).

Theorem (An–T.–Zhang ’24)

Given a product q of linear factors in x1, x2, . . . , xn with all coefficients 1,
the point α ∈ Zn

≥0 is a vertex of Newton(q) if and only if xα has a
coefficient of 1 in q.

Example

q = (x1 + x2)(x2 + x3)(x1 + x3)(x1 + x2 + x3)

= x31x2 + x31x3 + 2x21x
2
2 + 4x21x2x3 + 2x21x

2
3

+ x1x
3
2 + 4x1x

2
2x3 + 4x1x2x

2
3 + x1x

3
3 + x32x3 + 2x22x

2
3 + x2x

3
3

Vertices:{(3, 1, 0), (3, 0, 1), (1, 3, 0), (1, 0, 3), (0, 3, 1), (0, 1, 3)}

An, Tung, and Zhang Postnikov–Stanley Polynomials June 6, 2025 18 / 33



Vertices of Newton polytopes

Theorem (An–T.–Zhang ’24)

The point α ∈ Zn
≥0 is a vertex of Newton(Dw ) if and only if xα has a

coefficient of 1 in GW(w).

Theorem (An–T.–Zhang ’24)

Given a product q of linear factors in x1, x2, . . . , xn with all coefficients 1,
the point α ∈ Zn

≥0 is a vertex of Newton(q) if and only if xα has a
coefficient of 1 in q.

Example

q = (x1 + x2)(x2 + x3)(x1 + x3)(x1 + x2 + x3)

= x31x2 + x31x3 + 2x21x
2
2 + 4x21x2x3 + 2x21x

2
3

+ x1x
3
2 + 4x1x

2
2x3 + 4x1x2x

2
3 + x1x

3
3 + x32x3 + 2x22x

2
3 + x2x

3
3

Vertices:{(3, 1, 0), (3, 0, 1), (1, 3, 0), (1, 0, 3), (0, 3, 1), (0, 1, 3)}

An, Tung, and Zhang Postnikov–Stanley Polynomials June 6, 2025 18 / 33



Vertices of Newton polytopes (2)

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

Step 1: Build a staircase Young diagram with n = 6.
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Vertices of Newton polytopes (3)

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

1 0 0 0 0

1 1 0 1

1 0 0

1 1

1

Step 2: When w = 253641, the above boxes are filled with 1’s.
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Vertices of Newton polytopes (4)

(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

1 0 0 0 0

1 1 0 1

1 0 0

1 1

1

Step 3: We consider a tiling by n − 1 rectangles.
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Vertices of Newton polytopes (5)
(1, 6) (1, 5) (1, 4) (1, 3) (1, 2)

(2, 6) (2, 5) (2, 4) (2, 3)

(3, 6) (3, 5) (3, 4)

(4, 6) (4, 5)

(5, 6)

1 0 0 0 0

1 1 0 1

1 0 0

1 1

1

0

1

0

6

1

Step 4: We find that Newton(D253641) has vertex (0, 1, 0, 6, 1).
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Vertices of Newton polytopes (6)

(1, 4) (1, 3) (1, 2)

(2, 4) (2, 3)

(3, 4)

1 1 1

0 1

0

3

1

0

(1, 4) (1, 3) (1, 2)

(2, 4) (2, 3)

(3, 4)

1 1 1

0 1

0

1

3

0

(1, 4) (1, 3) (1, 2)

(2, 4) (2, 3)

(3, 4)

1 1 1

0 1

0

3

1

0
(1, 4) (1, 3) (1, 2)
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(3, 4)
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1

1

Newton(D4213) has vertices (3, 1, 0), (1, 3, 0), (1, 2, 1), (2, 1, 1).
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The vanishing problem for dual Schubert polynomials

Theorem (Adve–Robichaux–Yong ’21)

For w ∈ Sn, Schubert polynomial Sw , and α ∈ Zn−1
≥0 , there is a

polynomial-time algorithm to determine whether α ∈ supp(Sw ).

Theorem (An–T.–Zhang ’25)

For w ∈ Sn and α ∈ Zn−1
≥0 , there is an O(n5) algorithm to determine

whether α ∈ supp(Dw ).

(1, 2)• •x1

(1, 3)• •x1

(2, 3)• •x2
The network testing the term x21x2 in D321.
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Further conjectures

Conjecture (An–T.–Zhang ’24)

For all Bruhat intervals [u,w ] in Sn, D
w
u has SNP, and Newton(Dw

u ) is a
generalized permutahedron.

Conjecture (An–T.–Zhang ’24)

For u ∈ Sn, there exists w ∈ Sn such that Dw
u does not have SCNP if and

only if u contains a 1324-pattern.
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A chain of implications

SNP ⇐= M-convex ⇐= Lorentzian

Theorem

An M-convex polynomial has SNP and its Newton polytope is a
generalized permutahedron.
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Postnikov–Stanley polynomials are Lorentzian

In later work, we resolve our first conjecture.

Theorem (An–T.–Zhang ’24)

For all Bruhat intervals [u,w ] in Weyl group W , Dw
u is Lorentzian.
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λ-degree

Theorem (Borel–Weil–Bott theorem)

There is an isomorphism of abelian groups between the Picard group
Pic(G/B) and the weight lattice Λ under vector addition.

Definition

Let D denote the Cartier divisor associated with the line bundle Lλ. The
λ-degree degλ(X ) of an ℓ-dimensional irreducible subvariety X of G/B is
defined as the intersection product (Dℓ · X ), which corresponds to the
self-intersection number

∫
X (D)ℓ ∈ Z.

For λ ∈ Λ+ and the Borel–Weil mapping

e : G/B → P(Vλ), gB → g(vλ),

where Vλ is the irreducible representation of the Lie group G with highest
weight λ, and vλ is the highest weight vector, the λ-degree of X represents
the intersection number of e(X ) with a generic linear subspace of P(Vλ) of
codimension ℓ(w).
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Proof of Lorentzian-ness

Theorem (An–T.–Zhang ’24)

For all Bruhat intervals [u,w ] in Weyl group W , Dw
u is Lorentzian.

Proposition

The λ-degree of a (closed) Richardson variety is (ℓ(w)− ℓ(u))!Dw
u (λ).

Example

Let W = A2, u = 213, and w = 321. Consider the simple roots
α1 = (1,−1, 0) and α2 = (0, 1,−1), and let V = spanR(α1, α2). We
obtain fundamental weights ω1 = (23 ,−

1
3 ,−

1
3) and ω2 = (13 ,

1
3 ,−

2
3) in V .

Let λ be the dominant weight ω1 + ω2 = (1, 0,−1), so x1 = x2 = 1. Then

degλ R
w
u = (ℓ(w)− ℓ(u))! · Dw

u (1, 1) = 2! · 3
2
= 3.
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What is a Lorentzian polynomial?

Definition

Let h(x1, . . . , xn) be a degree d homogeneous polynomial, and let
e = d − 2. We say that h is strictly Lorentzian if all the coefficients of h
are positive and the quadratic form ∂

∂xi1
· · · ∂

∂xie
h has the signature

(+,−, . . . ,−) for any i1, . . . ie ∈ [n].
We say that h is Lorentzian if

(1) All the coefficients of h are nonnegative, the support of h is
M-convex, and the quadratic form ∂

∂xi1
· · · ∂

∂xie
h has at most one

positive eigenvalue for any i1, . . . ie ∈ [n].
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What are edge weights in in types other than A?

W is a Weyl group generated by the simple reflections
sα1 , sα2 , . . . , sαr corresponding to the simple roots α1, . . . , αr

α∨ is the coroot 2α
(α,α) corresponding to the positive root α ∈ Φ

For any λ in the weight lattice Λ, write λ = x1ω1 + · · ·+ xrωr , where
ω1, . . . , ωr are the fundamental weights

xi corresponds to the inner product (λ, α∨
i ) induced by the Killing

form (i.e. (ωi , α
∨
j ) = δij)

For a reflection sα and a covering relation u ⋖ usα in the strong
Bruhat order of W , the Chevalley multiplicity is defined by

m(u ⋖ usα) := (λ, α∨) =
r∑

i=1

ci (λ, α
∨
i ) =

r∑
i=1

cixi ,

ci are determined by “how to span a positive root α into the linear
combination of simple roots αi” in terms of coroots
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Example: type Bn

simple roots: αi = ei − ei+1 for 1 ≤ i ≤ n − 1; αn = en

positive roots: ei for 1 ≤ i ≤ n (short roots), ei ± ej for 1 ≤ i < j ≤ n
(long roots)

decomposition of short root α = ei :

α = αi + αi+1 + · · ·+ αn

decomposition of long root α = ei − ej :

α = αi + αi+1 + · · ·+ αj−1

decomposition of long root α = ei + ej :

α = αi + αi+1 + · · ·+ αj−1 + 2(αj + αj+1 + · · ·+ αn)
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