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Unimodal Sequences

a= (ap,a1,...,an) € Z%’l a combinatorial sequence

44— ——0—0— 06— 00— 00— 00— P
ao ai e ay e Gp-1 Gp

Unimodality:

ap<a; <---<aj>ajp1 = > a, forsomej

g -~

increase decrease
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Generalizations

44— ————0 — 0o — 0o — 06— 0o — 0 —P
ap aq e a; N Ap—1 A,

e Log-Concavity:
(112 > Ai4+1Q;—1 for 1 <1<n-1

@ Ultra Log-Concavity:

ap aq Ay,

For positive sequences:

Ultra Log-Concave =— Log-Concave —> Unimodal




Some Famous Examples

@ Binomial coefficients

are ultra log-concave
o (Butler 1990) g-binomial coefficients [g]q, mq, e

log-concave:
n]? n n
- Nlgq].
Mq [i—lL[i—lee la]

e Strong Mason Conjecture:
fi = number of independent sets of size 7 in a given matroid

is ultra log-concave (proved by Branden—-Huh and
Anari-Liu—Gharan—Vinzant)



Real-Rootedness

Theorem (Newton 1707)

Suppose
n
f(z) = Zajxj € R[z]
§=0
is real-rooted. Then (ag,a1,...,ay,) is ultra log-concave.
Quick proof:

e By Rolle’s theorem, g(x) := &’ 1 f(z) is real-rooted.
e Sois h(z) := 2" 77 1g(1/x).

e Sois

2 ) . . .
=i (2) = Gl 2y 9l L

n! (jfl) (]T) (jil) .



Log-Concavity and Products

Theorem (Classical)

Iff=ao+-- 4+ amnx™ and g = by + - - - + b,x™ have positive
log-concave coefficients, then so does fg.

This is not true for unimodal sequences:

(1+x+22%)(1 +x + 32%) = 1+ 2z + 622 + 52° + 6.



Describe some log-concavity properties of the maps

@ Dimensions

A= dimV(A)
o Characters
A= S\
o Weight multiplicities
o — K>\7a

@ Tensor product multiplicities
A\ p,v) — CK#

@ Verma modules
= p(A — p)



Why would multiplicities be log-concave ?

Andrei Okounkov

Abstract

It is a basic property of the entropy in statistical physics that is
concave as a function of energy. The analog of this in representation
theory would be the concavity of the logarithm of the multiplicity of
an irreducible representation as a function of its highest weight. We
discuss various situations where such concavity can be established or
reasonably conjectured and consider some implications of this concav-
ity. These are rather informal notes based on a number of talks I gave
on the subject, in particular, at the 1997 International Press lectures
at UC Irvine.



My favorite reason

Weight multiplicities are enumerated by integer points of polytopes

For Py,..., P, polytopes in R? and z1,...,x, > 0 the Minkowski
sum

P=xP+- 4P

has (normalized) volume

a1 «

vy

QALy.eQp | |

aeN" *1 A
lo|=d

Theorem (Alexandrov—Fenchel Inequalities)

The coefficients V, ... o, form log-concave sequences along root
directions €; — €;.




Describe some log-concavity properties o! the maps

@ Dimensions
A= dimV(A)



Dimensions of Irreducibles

Lemma (Okounkov 2003)

The function A — dim V() is log-concave on partitions:

(dim V ())? > dim V()\) dim V()

A v M
By the Weyl dimension formula:

dimV(\) =s\(1,1,....,1)= ] Aim Aty

Example:

dimV(2,1,0) =8 dimV(4,2,1) =15 dimV(6,3,2) =24



Describe some log-concavity properties o! the maps

o Characters
A= S\



Schur Polynomials and Tableaux

Definition

Given a partition \ € ZZ, the Schur polynomial sy is defined by

S)\(:L‘l, o 7$n) — char V()\) — Z xg#l’s inT) ‘x%#n/s in T)
TESSYT(N)
SSYT(2,1,0) :
111 [112) (12 000 [112] [13] [2]2] [2[3]
2020 20 BB BB Bl

2 2 2 2 2 2
89210 = T]X2 +X1X5 + X1 X203 +TIT3+T1 X203 + X125+ X5T3 + 20Xy

Skew Schur polynomial: sy, for A 2 u



Between Schur Polynomials

Theorem (Okounkov 1997)

Fori € {1,2,3}, suppose \) D 1) are partitions with

Then

2
SN@) /@ T SAW) /uMSA®) /u®) € Zxo[z1, %2, - - -]

A

4 — o ———o— P
AW, D) (A2, 1) (3O, u®)

Moreover, he conjectured Schur-positivity.



Between Schur Polynomials

Theorem (Lam—Postnikov—Pylyavskyy 2005)

The following are all Schur-positive

C (3%/%#)2 = SX\/uSv/p (Okounkov)
@ Ssorty (Au)Ssorta(Au) — SASu (Fomin—Fulton—Li-Poon)
o TTy sam — ITimq Sxtivmi (Lascoux—Leclerc-Thibon)

® S(\uV(/p) S AW/p) ~ S\uSu/p (Lam—Pylyavskyy)




Describe some log-concavity properties o! the maps

e Weight multiplicities
o — K)\,a



Kostka Numbers

The Kostka numbers are the weight multiplicities

K)\a = dim V(A)a
= coefficient of % in s,
= # of SSYT with shape X\ and weight «

1] [112] [I[3] [A[1] [1[2] [A13] [2]2] [2]3]

K(2,1,0),1,1,1) = 2

2 2 2 2,2 2
s210(21, T2, x3) = T{To+x125+2x1 Xox3+ 2 T3+ T 15+ T5T3+ X203



Weight Multiplicity Strings

Weight diagram of V'(4,2,0)
1 ! 1

oD
oD

1d

1e 2| 3| 2| ol N€1_62

10 s1 f2—€E3¢&1—¢3

ol

Ne
noe

K)\,a+2(62—61) K/\,o+(62—61) Ko K)\A,(H—(el—cg) K)\,a+2(el—nz)



The SSYT Crystal

Crystal operators on SSYT provides some insight into unimodality
of Kostka numbers.

The operator f; on SSYT(A) changes an i to an i+ 1 in a tableau
T by the recipe:

@ mapi+>)and i+ 1 (
@ read parentheses up columns
o iteratively remove matched pairs ()

@ change the rightmost ) to a (

1122[2]3] 12[2]3]3]
for BHE — 00N =)= Fis
4] 4]




Crystal Operators




Unimodality via Crystals

J1
-—
1[1]3]3]
2[2
112]2[3] [1[1]2]3] [1]1]1]3]
2[3 213 2[3
2121212] [1[2][2[2] [1]1]2]2] [afaifif2] [aififi]i]
313 3[3 3[3 313 3[3

(0,4,2) (1,3,2) (2,2,2) (3,1,2) (4,0,2)



Log-Concavity of Kostka Numbers?

K/\,ﬁ72a1 K)\,Bfoci K/\iyoci K/\ﬁﬁ»oq K/\,3+2ai

Proposition

For any partition \, weight (3, and simple root «;, the sequence
(K) B+pa; )pez 1s unimodal.

At least partially unimodal, so maybe also log-concave?

2
K)\a 2 K/\,a—i-ai—sj K/\,oa—ai—&-aj

Theorem (Huh—Matherne-Mészaros-S. 2019)

Yes! (with Lorentzian polynomials)




Lorentzian Polynomials

Definition (Brandén—Huh 2019)

A homogeneous polynomial f of degree d with nonnegative
coefficients is Lorentzian if

e supp(f) equals the set of integer points in a generalized

permutahedron (M-convexity)

o)
oy (%Z f has at most one positive eigenvalue




What is a polynomial?

Continuous Answer:

A function f: R™ — R of the

form

Continuous log-concavity: log(f)
is a concave function on the

domain

If f(zy,...
., Ty) are log-concave,
then so is the product

)9z, ...

g(z, ..

f(xl,“

E Cax®

aeN”

n

,Zn) and

)

Discrete Answer:

A finite subset S of N™ together
with labels o — ¢,

Discrete log-concavity:
2>
Ca Z COé-‘rSi—é‘jac—Ei-‘rEj
If ag,ai,...a, and by, by, ..., by

are positive and log-concave, then
so is the convolution (a;); ® (b;);.



Lorentzian Polynomials

Theorem (Brénden—Huh 2019)

Suppose f(z) = Z cax™ is nonzero and N(f) is Lorentzian.
aeN™

Then:

e N(f) is log-concave on the positive orthant.
o> Cate;—e;Ca—eite; for every a € N™ and i, j € [m].

e If N(g) is also Lorentzian, then so are both N(f)N(g) and
N(fg)-

More generally: For homogeneous polynomials, Lorentzian is
equivalent to being either of

o strongly log-concave — f and all derivatives are log-concave

e completely log-concave — f and all positive combinations of
derivatives are log-concave



Why the quadratic derivatives?

Theorem (Anari-Liu—Oveis—Gharan—Vinzant 2018)

If f € Rlxy,...,x,] is homogeneous of degree d with nonnegative
coefficients and

o for any a € 72, with |a|] < d —2, 0°f is indecomposable;

o for any a € Z2, with |a| = d — 2, the quadratic 0“f is
log-concave;

then f is completely log-concave.




Why the quadratic derivaties?

.2
Ca 2 Ca—i—ei—ej C(x—e,,;—O—fzj

Proof idea:
aafelfez 1
2 2
Opa—e1—ea N(f) = §Ca+61—62x1+cawlx2+§(z(1761+62$2
r3=:-=xn=0

With at most one positive eigenvalue

det <CQ+6162 (&% ) <0

Ca Ca—eq+ez



Kostka Numbers

Theorem (Huh—Matherne-Mészaros-S. 2019)




Describe some log-concavity properties o! the maps

°
@ Tensor product multiplicities

A1) = X



Littlewood—Richardson Numbers

The Littlewood-Richardson numbers are ¢, € Z>( defined by
S\Su = ZCKMSV'
v

Classically nonnegative and count various combinatorial objects.

Representation Theory:
cl/{u are the tensor product multiplicities:

VeV = @ (V)

L(v)<n

Geometry:
In the cohomology of the Grassmannian Gry, ,,(C):

O\~ Oy = Z 30w
vCkx(n—k)



Okounkov's Conjecture

Conjecture (Okounkov 2003)

The discrete function
(A, v) = €5,

is a log-concave function of \, i, v.

True asymptotically!
(Proved by Okounkov and again by Chindris—Derksen—Weyman)

Implies other true results like. ..



When is CKM > 07

_ Ov v 2v Nv
1= Cox0u Cxp Cox2u Tt CNANu

If log(c},,) is concave, then

{(A\p,v) | e5,, > 0} is convex.



Saturation Conjecture

Theorem (Knutson—Tao 1998)

For any partitions \, i, v,
s, > 0 if and only ifc%iNu >0

for any N > 1.

The Horn inequalities state that c§, > 0 exactly when (A, p1,v)
satisfies recursive inequalities of the form

Zx\i-l-z,uj = Zl/k.

il jeJ keK



Okounkov's Conjecture

Theorem (Chindris—Derksen-Weyman 2007)

Okounkov’s conjecture is false.

\J

0 2v 3V .. Nv
CO,O =1 C)\u C2/\,2;1, C3/\,3;1, CN)\,N;J,

v N+1)v N-1)v
(N ) = (i) (N1

Counterexample:

A== 32921921, 21312921



Kostka and Littlewood—Richardson

The log-concavity inequalities

2
K)\a = K)\,a+€i—€j K)\,a—sﬁ-sj

are a special case of Okounkov's conjecture!

o N

K)\’E = C)\’F

Theorem (Huh—Matherne-Mészaros-S. 2019)

For partition tuples in the image of the map from Kostka numbers:

2 V40 — 0 V—w0;+w;
4 7 J 7 J
(c)\,,u) 2 c)\,/ﬁ—wi_l—wj-_lC)x,p,—wi_l—&—wj-_l'




Describe some log-concavity properties o! the maps

@ Verma modules
= p(A — )



Verma Modules

The Verma module M () is the universal highest weight module
with highest weight A:
— Ug

Ug-nt+> (Ug: (hi = A(hi))

el

M(X):

By the Poincaré—Birkhoff-Witt theorem:
dim M(X), = p(A — ), where

p(v) is the Kostant partition function — the number of ways to
write v as a sum of positive roots.
Example:

p(2,1,-3) = {201 + 32, 2(a1 + a2) + a2, (a1 + a2) + a1 + 2as}]
= 3.



Verma Modules

Is v — p(v) log-concave?

Theorem (Huh—Matherne-Mészaros-S. 2019)

For every p € Z™ and i, j € [n],

p(v)2 2 p(v+e; —g)p(v — & +€5).

Idea:
@ p(v) are the mixed volumes of flow polytopes.

@ Mixed volumes are log-concave in root directions by the
Alexandrox—Fenchel inequalities.

Does this log-concavity hold for a more general family of universal
modules over sl,,1(C)?




Parabolic Verma Modules

For a subset J C [n], the parabolic Verma module is
M (/\)
A(hj) :
ZUQ f]( M)

M\ J) =

Extremal cases:
o J=10: M(X\0)= M()) (the Verma module)
o J=1: M(\I)=V()\) (the finite-dimensional irrep)

Theorem (Khare—Matherne-S. 2025)

The weight multiplicities of any sl,,1(C) parabolic Verma module
are log-concave along root directions.




Thanks for listening!

J1
-—
1[1]3]3]
2[2
112]2[3] [1[1]2]3] [1]1]1]3]
2[3 213 213
2121212] [1[2][2]2] [1]1]2]2] [afaifif2] ([aififi]i]
313 3[3 3[3 313 3[3
1 2 3 2 1



