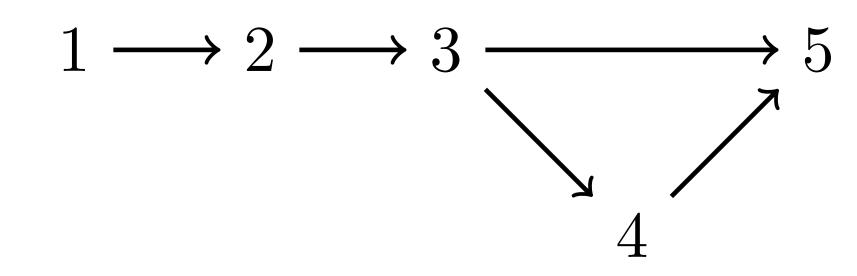
Combinatorial Rules for Canonical Decomposition of Quiver Reps

Casey Appleton, June 4th

Goal: Define Quivers their representations, canonical decomposition, and present combinatorics for computing the latter in types A_n, D_n

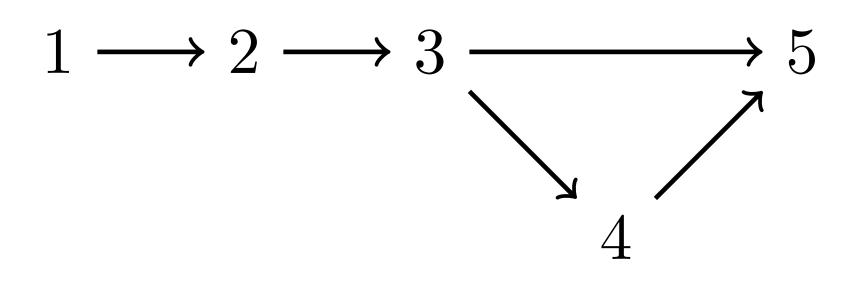
Quivers and Quiver Representations Review

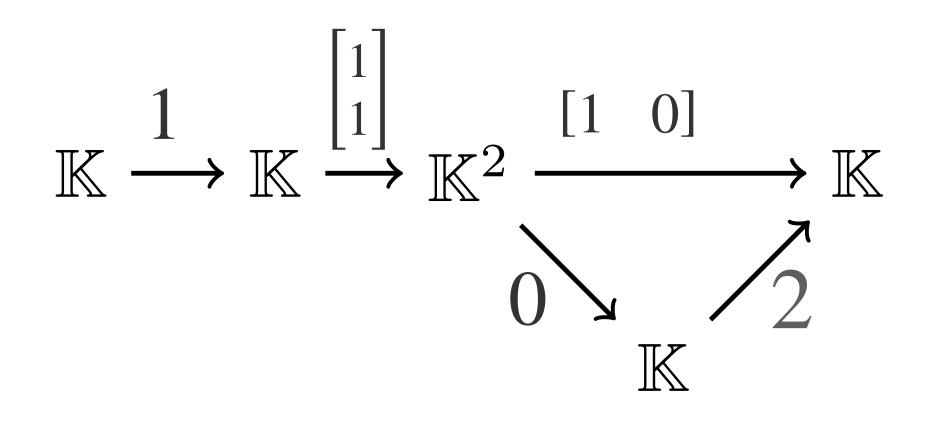
• A quiver is a directed graph, $Q = (Q_0, Q_1, s, t)$



Quivers and Quiver Representations Review

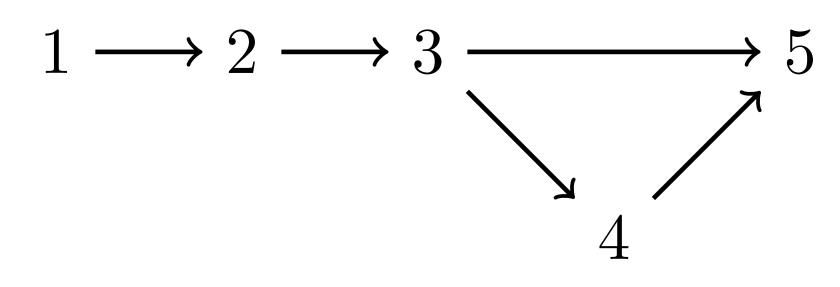
- A quiver is a directed graph, $Q = (Q_0, Q_1, s, t)$
- A representation V of a quiver Qover a field \mathbb{K} is an assignment of a \mathbb{K} -vector space V_i to each vertex i of Q, along with an assignment to each arrow $r: i \rightarrow j$ of Q a linear map $V[r]: V_i \rightarrow V_j$

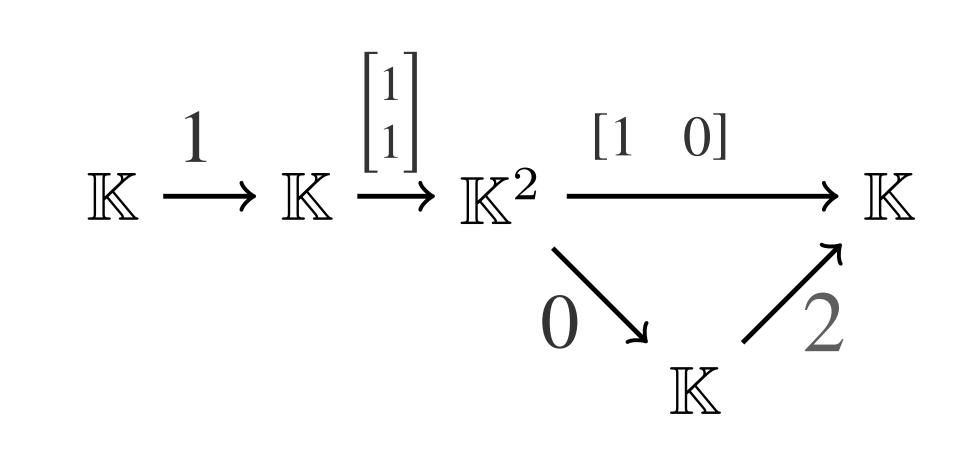




Quivers and Quiver Representations Review

- A representation V of a quiver Q over a field \mathbb{K} is an assignment of a \mathbb{K} -vector space V_i to each vertex i of Q, along with an assignment to each arrow $r : i \to j$ of Q a linear map $V[r] : V_i \to V_j$
- The dimension vector is the nonnegative integer vector with components $dim(V)_i = dim(V_i)$

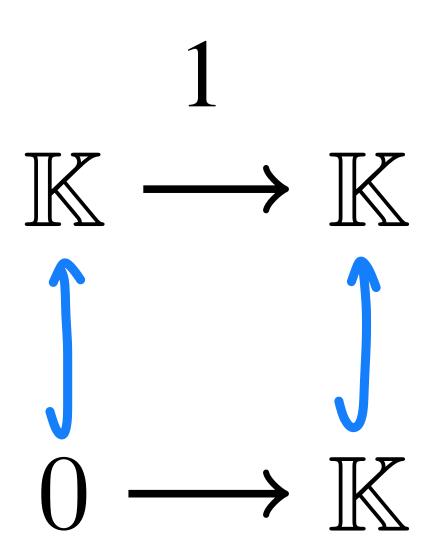




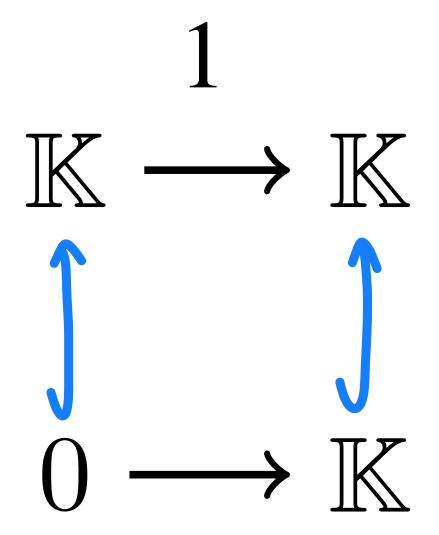
(1, 1, 2, 1, 1)

• A morphism $\phi: N \to M$ of Q-reps is a Q_0 indexed family of linear maps

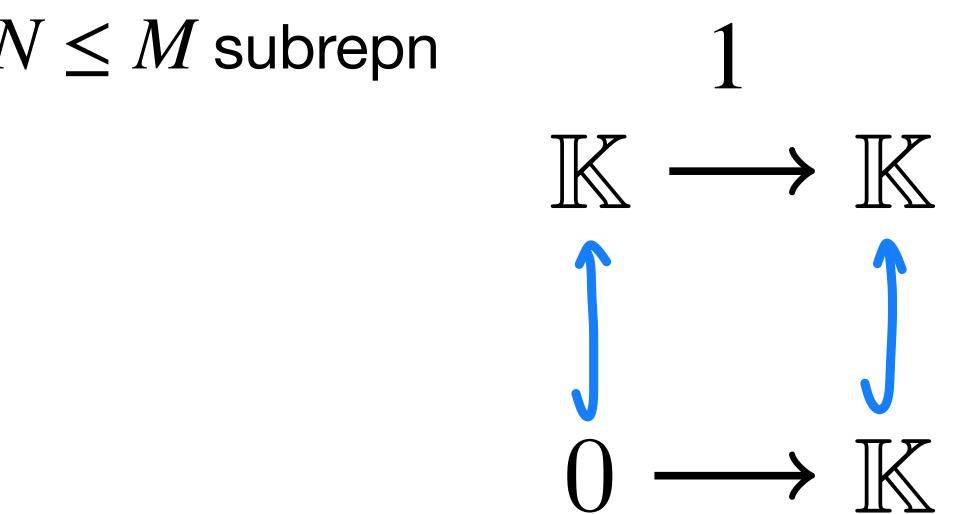
 $\phi_i: N_i \to M_i$ such that squares commute (i.e., $\phi_i \circ M_r = N_r \circ \phi_i$ for $r: i \to j$)



- A morphism $\phi: N \to M$ of Q-reps is a Q_0 indexed family of linear maps $\phi_i: N_i \to M_i$ such that squares commute (i.e., $\phi_i \circ M_r = N_r \circ \phi_i$ for $r: i \to j$)
- All ϕ_i are invertible \iff isomorphism

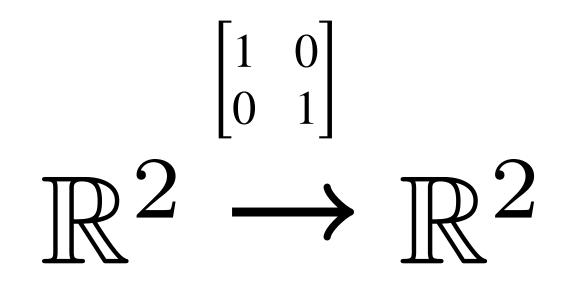


- A morphism $\phi : N \to M$ of Q-reps is a Q_0 indexed family of linear maps $\phi_i : N_i \to M_i$ such that squares commute (i.e., $\phi_j \circ M_r = N_r \circ \phi_i$ for $r : i \to j$)
- All ϕ_i are invertible \iff isomorphism
- All ϕ_i are subspace inclusions $\Longleftrightarrow N \leq M$ subrepn

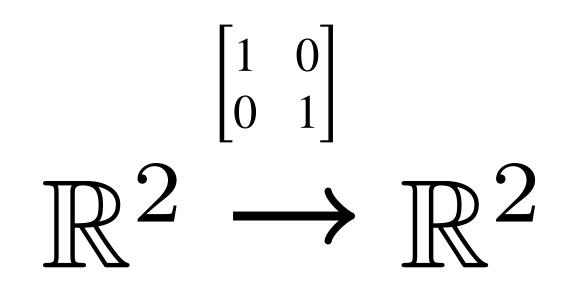


• If N and M are representations of Q, their direct sum is given by

 $(N \oplus M)_i := N_i \oplus M_i$ with $(N \oplus M)_{ij} := N_{ij} + M_{ij} : N_i \oplus M_i \to N_j \oplus M_j$



- If *N* and *M* are representations of *Q*, their direct sum is given by $(N \bigoplus M)_i := N_i \bigoplus M_i$ with $(N \bigoplus M)_{ij} := N_{ij} + M_{ij} : N_i \bigoplus M_i \to N_j \bigoplus M_j$
- If P, N are subrepresentations of M such that $N_i \cap P_i = 0 \& N_i + P_i = M_i$, we say M is the (internal) direct sum of P and N.



- If *N* and *M* are representations of *Q*, their direct sum is given by $(N \bigoplus M)_i := N_i \bigoplus M_i$ with $(N \bigoplus M)_{ij} := N_{ij} + M_{ij} : N_i \bigoplus M_i \to N_j \bigoplus M_j$
- If P, N are subrepresentations of M such that $N_i \cap P_i = 0 \& N_i + P_i = M_i$, we say M is the (internal) direct sum of P and N.
- The speaker (ahem) should now explain the example given below

$$\mathbb{R}^2 \xrightarrow{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}} \mathbb{R}^2$$

- If *N* and *M* are representations of *Q*, their direct sum is given by $(N \bigoplus M)_i := N_i \bigoplus M_i$ with $(N \bigoplus M)_{ij} := N_{ij} + M_{ij} : N_i \bigoplus M_i \to N_j \bigoplus M_j$
- If P, N are subrepresentations of M such that $N_i \cap P_i = 0 \& N_i + P_i = M_i$, we say M is the (internal) direct sum of P and N.
- The speaker (ahem) should now explain the example given below

Yeah, YOU!

$$\mathbb{R}^2 \xrightarrow{\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}} \mathbb{R}^2$$

• We say a (nonzero) quiver repn M is indecomposable if it cannot be expressed as $M \cong N_1 \oplus N_2$ with $N_1, N_2 \leq M$ nonzero subreps.

$0 = 1 \longrightarrow 2 \longleftarrow 3$

- We say a (nonzero) quiver repn M is indecomposable if it cannot be expressed as $M \cong N_1 \oplus N_2$ with $N_1, N_2 \leq M$ nonzero subreps.
- isomorphisms of the summands.

• Theorem (Krull Schmidt): Any repn M of a quiver Q can be expressed as a direct sum of indecomposable subreps, uniquely up to reordering and

$0 = 1 \longrightarrow 2 \longleftarrow 3$

- We say a (nonzero) quiver repn M is indecomposable if it cannot be expressed as $M \cong N_1 \bigoplus N_2$ with $N_1, N_2 \leq M$ nonzero subreps.
- Theorem (Krull Schmidt): Any repn M of a quiver Q can be expressed as a direct sum of
- Note that this allows us to characterize any quiver repn by a multiset of indecomposable ones.

indecomposable subreps, uniquely up to reordering and isomorphisms of the summands.

$O = 1 \longrightarrow 2 \longleftarrow 3$

- We say a (nonzero) quiver repn M is indecomposable if it cannot be expressed as $M \cong N_1 \oplus N_2$ with $N_1, N_2 \leq M$ nonzero subreps.
- Theorem (Krull Schmidt): Any repn M of a quiver Q can be expressed as a direct sum of
- Note that this allows us to characterize any quiver repn by a multiset of indecomposable ones.
- Example: If Q is an A_n quiver, indecomposables correspond to subintervals of [1,n], and any repr M of Q is isomorphic to some $M_O([i_1, j_1]) \oplus \ldots \oplus M_O([i_l, j_l])$

indecomposable subreps, uniquely up to reordering and isomorphisms of the summands.

$Q = 1 \longrightarrow 2 \longleftarrow 3$

- We say a (nonzero) quiver repr M is indecomposable if it cannot be expressed as $M \cong N_1 \oplus N_2$ with $N_1, N_2 \leq M$ nonzero subreps.
- Theorem (Krull Schmidt): Any repn M of a quiver Q can be expressed as a direct sum of
- Note that this allows us to characterize any quiver repn by a multiset of indecomposable ones.
- Example: If Q is an A_n quiver, indecomposables correspond to subintervals of [1,n], and any repr M of Q is isomorphic to some $M_O([i_1, j_1]) \oplus \ldots \oplus M_O([i_l, j_l])$
- D_4 quivers are the smallest Dynkin quivers having indecomposable representations involving 2-dimensional vector spaces.

indecomposable subreps, uniquely up to reordering and isomorphisms of the summands.

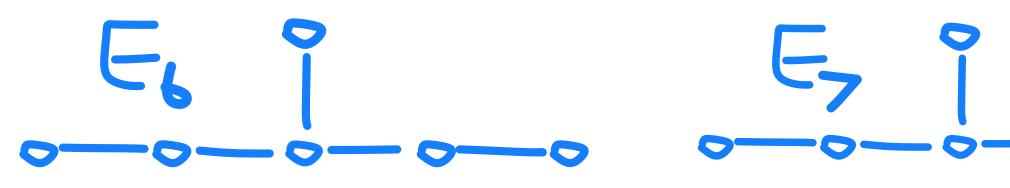
 $Q = 1 \longrightarrow 2 \longleftarrow 3$

- We say a (nonzero) quiver repn M is indecomposable if it cannot be expressed as $M \cong N_1 \oplus N_2$ with $N_1, N_2 \leq M$ nonzero subreps.
- Theorem (Krull Schmidt): Any repn M of a quiver Q can be expressed as a direct sum of
- Note that this allows us to characterize any quiver repn by a multiset of indecomposable ones.
- Example: If Q is an A_n quiver, indecomposables correspond to subintervals of [1,n], and any repr M of Q is isomorphic to some $M_O([i_1, j_1]) \oplus \ldots \oplus M_O([i_l, j_l])$
- D_4 quivers are the smallest Dynkin quivers having indecomposable representations involving 2-dimensional vector spaces.
- What are A_n, D_n and Dynkin quivers?

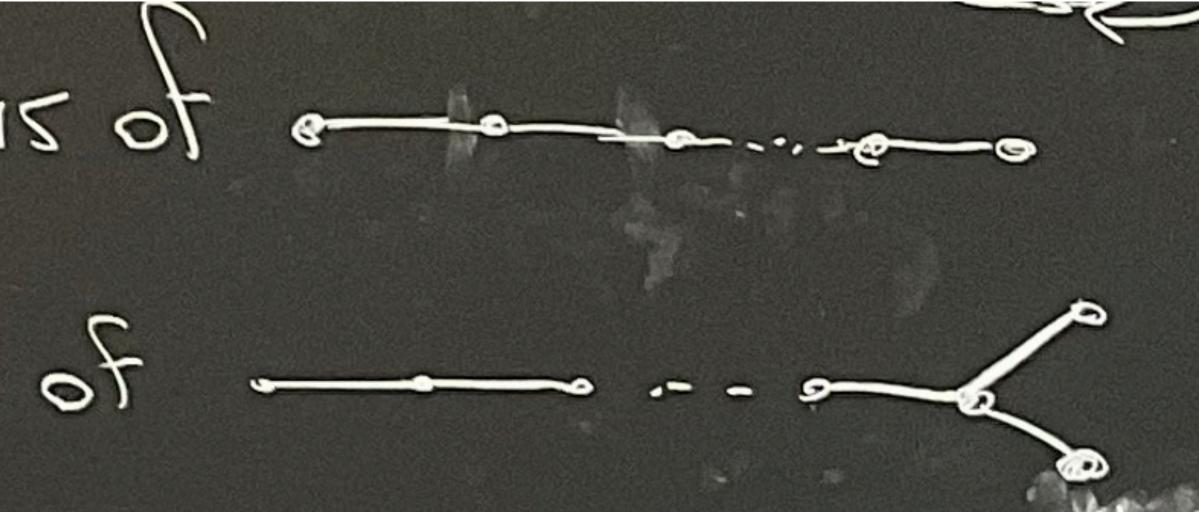
indecomposable subreps, uniquely up to reordering and isomorphisms of the summands.

Dynkin Quivers & Diagrams 2 infinite families, $A_n \& D_n$, + 3 exceptions, E_6, E_7, E_8

-Type A: Obientations of e-- Type D: Orientations of ...



n denotes the total # of vertices in each case



• Funky Fresh Fact: The Dynkin quivers Q are exactly the ones having only finitely many (isomorphism classes of) indecomposable representations.

- have distinct dimension vectors.

• Funky Fresh Fact: The Dynkin quivers Q are exactly the ones having only finitely many (isomorphism classes of) indecomposable representations.

• Funkier Fresh Fact: Nonisomorphic indecomposable representations of Q

- Funky Fresh Fact: The Dynkin quivers Q are exactly the ones having only finitely many (isomorphism classes of) indecomposable representations.
- Funkier Fresh Fact: Nonisomorphic indecomposable representations of ${\cal Q}$ have distinct dimension vectors.
- Funkiest Fresh Fact: The dimension vectors of the indecomposable repns
 of Q are exactly the positive root vectors of the corresponding root
 system.

- Funky Fresh Fact: The Dynkin quivers Q are exactly the ones having only finitely many (isomorphism classes of) indecomposable representations.
- Funkier Fresh Fact: Nonisomorphic indecomposable representations of ${\cal Q}$ have distinct dimension vectors.
- Funkiest Fresh Fact: The dimension vectors of the indecomposable repns
 of Q are exactly the positive root vectors of the corresponding root
 system.
- Importantly, the indecomposables' dimension vectors can be described completely combinatorially, especially in types A_n, D_n

- Funky Fresh Fact: The Dynkin quivers Q are exactly the ones having only finitely many (isomorphism classes of) indecomposable representations.
- Funkier Fresh Fact: Nonisomorphic indecomposable representations of ${\cal Q}$ have distinct dimension vectors.
- Funkiest Fresh Fact: The dimension vectors of the indecomposable reprise of Q are exactly the positive root vectors of the corresponding root system.
- Importantly, the indecomposables' dimension vectors can be described completely combinatorially, especially in types A_n, D_n
- This allows us to characterize any representation of Q up to isomorphism by an associated multiset of indecomposable dimension vectors \iff positive roots

• Consider a quiver $Q = (Q_0, Q_1, s, t)$ and a dimension vector $\underline{d} \in \mathbb{Z}_{>0}^{Q_0}$ of it.

Define $Rep_Q(\underline{d}) := \prod_{i=1}^{N} Mat_{d_i,d_i}(\mathbb{K})$ $r \in Q_1: i \rightarrow j$

• Consider a quiver $Q = (Q_0, Q_1, s, t)$ and a dimension vector $\underline{d} \in \mathbb{Z}_{>0}^{Q_0}$ of it.

- Consider a quiver $Q = (Q_0, Q_1, s, t)$ and a dimension vector $\underline{d} \in \mathbb{Z}_{\geq 0}^{Q_0}$ of it. • Define $Rep_Q(\underline{d}) := \prod_{r \in Q_1: i \to j} Mat_{d_j, d_i}(\mathbb{K})$
- To each point $(M_r)_{r \in Q_1} \in \operatorname{Rep}_Q(\underline{d})$, we can associate a quiver repn M of Q having dimension vector \underline{d} via $M_i := \mathbb{K}^{d_i}$, and $M[r] = M_r : \mathbb{K}^{d_i} \to \mathbb{K}^{d_j}$

- Consider a quiver $Q = (Q_0, Q_1, s, t)$ and a dimension vector $\underline{d} \in \mathbb{Z}_{>0}^{Q_0}$ of it. Define $Rep_Q(\underline{d}) := Mat_{d_i,d_i}(\mathbb{K})$ $r \in Q_1: i \rightarrow j$
- To each point $(M_r)_{r \in Q_1} \in Rep_Q(\underline{d})$, we can associate a quiver repr M of Q having dimension vector d via $M_i := \mathbb{K}^{d_i}$, and $M[r] = M_r : \mathbb{K}^{d_i} \to \mathbb{K}^{d_j}$
- We can define an equivalence relation on $Rep_O(\underline{d})$ by $(M_r)_{r\in Q_1} \sim (N_r)_{r\in Q_1} \iff M \cong N.$

- Consider a quiver $Q = (Q_0, Q_1, s, t)$ and a dimension vector $\underline{d} \in \mathbb{Z}_{>0}^{Q_0}$ of it. Define $Rep_Q(\underline{d}) := Mat_{d_i,d_i}(\mathbb{K})$ $r \in Q_1: i \rightarrow j$
- To each point $(M_r)_{r \in Q_1} \in \operatorname{Rep}_Q(\underline{d})$, we can associate a quiver repr M of Q having dimension vector \underline{d} via $M_i := \mathbb{K}^{d_i}$, and $\widetilde{M[r]} = M_r : \mathbb{K}^{d_i} \to \mathbb{K}^{d_j}$
- We can define an equivalence relation on $Rep_O($

$$\underline{d}) \text{ by } (M_r)_{r \in Q_1} \sim (N_r)_{r \in Q_1} \iff M \cong N.$$

• Every representation of Q with dimension vector d is isomorphic to a quiver reprised constructed in this way

equivalence class which is an open dense subset of $Rep_O(\underline{d})$.

• Funky Fresh Fact Esquire: When Q is a Dynkin quiver, for any d, there are only finitely many equivalence classes, and among them, there's a unique

- equivalence class which is an open dense subset of $Rep_O(\underline{d})$.
- is known as the rigid representation of Q with dim vector d.

• Funky Fresh Fact Esquire: When Q is a Dynkin quiver, for any d, there are only finitely many equivalence classes, and among them, there's a unique

• Any representation of Q corresponding to a point in this equivalence class

- equivalence class which is an open dense subset of $Rep_O(\underline{d})$.
- is known as the rigid representation of Q with dim vector d.
- takes in a quiver and dim vector and outputs a multiset of indecomposables \iff positive roots.

• Funky Fresh Fact Esquire: When Q is a Dynkin quiver, for any d, there are only finitely many equivalence classes, and among them, there's a unique

• Any representation of Q corresponding to a point in this equivalence class

• Thus, we have a pipeline, $(Q,\underline{d}) \rightarrow rigid \in Rep_O(\underline{d})/ \sim \rightarrow \{M_{\alpha}\}$, which

- Funky Fresh Fact Esquire: When Q is a Dynkin quiver, for any \underline{d} , there are only finitely many equivalence classes, and among them, there's a unique equivalence class which is an open dense subset of $Rep_Q(\underline{d})$.
- Any representation of Q corresponding to a point in this equivalence class is known as the rigid representation of Q with dim vector <u>d</u>.
- Thus, we have a pipeline, $(Q, \underline{d}) \rightarrow rigid \in Rep_Q(\underline{d})/ \sim \rightarrow \{M_{\alpha}\}$, which takes in a quiver and dim vector and outputs a multiset of indecomposables \iff positive roots.
- The resulting decomposition of the rigid representation into indecomposables is called the canonical decomposition of (Q,\underline{d})

- dense subset of $Rep_O(\underline{d})$.
- rigid representation of Q with dim vector d.
- and dim vector and outputs a multiset of indecomposables \iff positive roots.
- The resulting decomposition of the rigid representation into indecomposables is called the canonical decomposition of (Q, d)
- Funky Fact: Every indecomposable reprint of Q is the canonical decomposition for its own dimension vector.

• Funky Fresh Fact Esquire: When Q is a Dynkin quiver, for any d, there are only finitely many equivalence classes, and among them, there's a unique equivalence class which is an open

• Any representation of Q corresponding to a point in this equivalence class is known as the

• Thus, we have a pipeline, $(Q,\underline{d}) \to rigid \in Rep_0(\underline{d})/ \sim \to \{M_\alpha\}$, which takes in a quiver

in the plane

• We use the data (Q, d) to construct, column by column, a diagram of boxes

- in the plane
- We can then dissect this diagram "row-wise" into a collection of pieces/

• We use the data (Q, d) to construct, column by column, a diagram of boxes

smaller diagrams, each corresponding to indecomposable dimension vectors

- We use the data (Q, \underline{d}) to construct, column by column, a diagram of boxes in the plane
- We can then dissect this diagram "row-wise" into a collection of pieces/ smaller diagrams, each corresponding to indecomposable dimension vectors
- The resulting multiset of pieces/smaller diagrams realizes the canonical decomposition of (Q,\underline{d})

- We use the data (Q, d) to construct, column by column, a diagram of boxes in the plane
- We can then dissect this diagram "row-wise" into a collection of pieces/ smaller diagrams, each corresponding to indecomposable dimension vectors
- The resulting multiset of pieces/smaller diagrams realizes the canonical decomposition of (Q,\underline{d})
- To figure out which pieces correspond to which indecomposables, we can just apply to rule to indecomposable dimension vectors, and see what the resulting piece/diagram looks like

Let's jump into the details of the rules! (Diagram Construction and dissection)

- Type A_n : <u>https://www.desmos.com/calculator/yn2vabtmxh</u>
- Type D_n : <u>https://www.desmos.com/calculator/uyyq6kztqy</u>