Combinatorial Rules for Canonical
Decomposition of Quiver Reps

Goal: Define Quivers their representations, canonical decomposition,
and present combinatorics for computing the latter in types A , D,

Casey Appleton, June 4th
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Quivers and Quiver Representations

Review
] —m2— 33— 5

» A representation V of a quiver
() over a field K is an \ /
assignment of a [K-vector 4

space V to each vertex 1 of 0,
along with an assignment to ll

eacharrowr:i — jof Qa 1
linear map V|[r|: V, — V]

* [he dimension vector is the K
nonnegative integer vector with
components

dim(V), = dim(V) (1,1,2,1,1)
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(continued)

» A morphism ¢ : N — M of Q-reps is a (J, indexed family of linear maps
¢; : N; = M; such that squares commute (i.e., ;o M, = N, o ¢;forr : i — j)
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Quivers and Quiver Representations

(continued)

» A morphism ¢ : N — M of Q-reps is a (J, indexed family of linear maps
¢; : N; = M; such that squares commute (i.e., ;o M, = N, o ¢;forr : i — j)

» All ¢, are invertible <= isomorphism

» All @; are subspace inclusions <= N < M subrepn 1
K — K
0 — K
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(continued)

 If N and M are representations of (), their direct sum is given by
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Quivers and Quiver Representations

(continued)

 If N and M are representations of (), their direct sum is given by

» If P, N are subrepresentations of M suchthat NN P, =0&N, + P, = M, we
say M is the (internal) direct sum of P and V.

* The speaker (ahem) should now explain the example given below

Yeah, YOU!

o

R? — R?
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Decomposition of Quiver Reps

« We say a (nonzero) quiver repn M is indecomposable if it cannot be expressed as
M = N, & N, with N;, N, < M nonzero subreps.

e Theorem (Krull Schmidt): Any repn M of a quiver O can be expressed as a direct sum of
indecomposable subreps, uniquely up to reordering and isomorphisms of the summands.

* Note that this allows us to characterize any quiver repn by a multiset of indecomposable
ones.

« Example: If Q is an A, quiver, indecomposables correspond to
subintervals of | 1,n], and any repn M of Q is isomorphic to some

Mo(lip ji) @ - .. @ Mo(lipnji])

« D, quivers are the smallest Dynkin quivers having indecomposable
representations involving 2-dimensional vector spaces.

« Whatare A,, D, and Dynkin quivers? O=1—2«—3




Dynkin Quivers & Diagrams

2 infinite families, A, & D, , + 3 exceptions, E, E-, Eg

—~— T ™

-'Tu)re A: Oo’ie'/\h}fow{ OV & 5 Re_ . .o— o

*T\o[)e D:Oﬁeﬂ‘n}c’omi O% -~ - 9-\<

EQ T E7 T E‘J‘T

o0 O O/ o—0— 00— O——0—0 o--——0—0—/ 00— 00 —0

n denotes the total # of vertices in each case
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Gabriel’s Theorem

Gabriel’s theorem tells us what makes Dynkin Quivers special

Funky Fresh Fact: The Dynkin quivers Q are exactly the ones having only finitely
many (isomorphism classes of) indecomposable representations.

Funkier Fresh Fact: Nonisomorphic indecomposable representations of () have
distinct dimension vectors.

Funkiest Fresh Fact: The dimension vectors of the indecomposable repns of O are
exactly the positive root vectors of the corresponding root system.

Importantly, the indecomposables’ dimension vectors can be described
completely combinatorially, especially in types A,, D,

This allows us to characterize any representation of O up to isomorphism by an
associated multiset of indecomposable dimension vectors <= positive roots
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The Space of Quiver Reps

Q: How does one express the datum of a quiver repn concretely?

. Consider a quiver Q = (Q,, 01, 5, ) and a dimension vector d € Zg% of it.

Define Rep(d) = H Matdj,di([K)

reQ:i—j

 To each point (M,,),,EQ1 € Rep(d), we can associate a quiver repn M of Q) having dimension vector d
viaM; := K%, and M[r] = M, : K% — K9

» We can define an equivalence relation on Rep(d) by (M,,),,EQ1 ~ (Npeg, <= M =N,

» Every representation of O with dimension vector d is isomorphic to a quiver repn constructed in this way
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Last slide, we constructed a space Rep,(d) of quiver reps

» Funky Fresh Fact Esquire: When Q is a Dynkin quiver, for any d, there are only
finitely many equivalence classes, and among them, there’s a unique equivalence

class which is an open dense subset of RepQ( d).

» Any representation of O corresponding to a point in this equivalence class is
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Canonical Decomposition for Dynkin O

Last slide, we constructed a space Rep,(d) of quiver reps

Funky Fresh Fact Esquire: When Q is a Dynkin quiver, for any d, there are only finitely many
equivalence classes, and among them, there’s a unigue equivalence class which is an open

dense subset of Rep,(d).

Any representation of ) corresponding to a point in this equivalence class is known as the
rigid representation of Q with dim vector d.

Thus, we have a pipeline, (), d) — rigid € Rep,(d)/ ~ — {M,}, which takes in a quiver
and dim vector and outputs a multiset of indecomposables <= positive roots.

The resulting decomposition of the rigid representation into indecomposables is called the
canonical decomposition of (0, d)

Funky Fact: Every indecomposable repn of () is the canonical decomposition for its own
dimension vector.
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Combinatorial Rules intypes A, , D,
Big Picture: How do the combinatorial rules work?

» We use the data (Q, d) to construct, column by column, a diagram of boxes
INn the plane

 We can then dissect this diagram “row-wise” into a collection of pieces/
smaller diagrams, each corresponding to indecomposable dimension vectors

* The resulting multiset of pieces/smaller diagrams realizes the canonical
decomposition of (0, d)

* Jo figure out which pieces correspond to which indecomposables, we can
just apply to rule to indecomposable dimension vectors, and see what the
resulting piece/diagram looks like




Let’s jump into the details of the rules!

(Diagram Construction and dissection)

» Type A, : https://www.desmos.com/calculator/yn2vabtmxh

« Type D, : https://www.desmos.com/calculator/uyyq6kztqy
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