
Casey Appleton, June 4th

Combinatorial Rules for Canonical 
Decomposition of Quiver Reps

Goal: Define Quivers their representations, canonical decomposition, 
and present combinatorics for computing the latter in types An, Dn
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Quivers and Quiver Representations
Review
• A quiver is a directed graph, 

Q = (Q0, Q1, s, t)
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Quivers and Quiver Representations
Review
• A quiver is a directed graph, 




• A representation  of a quiver  
over a field  is an assignment of 
a -vector space  to each 
vertex  of , along with an 
assignment to each arrow 

 of  a linear map 

Q = (Q0, Q1, s, t)
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Quivers and Quiver Representations
Review

• A representation  of a quiver 
 over a field  is an 

assignment of a -vector 
space  to each vertex  of , 
along with an assignment to 
each arrow  of  a 
linear map 


• The dimension vector is the 
nonnegative integer vector with 
components 

V
Q 𝕂

𝕂
Vi i Q

r : i → j Q
V[r] : Vi → Vj

dim(V)i = dim(Vi)
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Quivers and Quiver Representations
 (continued)

• A morphism  of -reps is a  indexed family of linear maps 
  such that squares commute (i.e.,  for ) 
ϕ : N → M Q Q0

ϕi : Ni → Mi ϕj ∘ Mr = Nr ∘ ϕi r : i → j
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Quivers and Quiver Representations
 (continued)

• A morphism  of -reps is a  indexed family of linear maps 
  such that squares commute (i.e.,  for ) 


• All  are invertible  isomorphism

ϕ : N → M Q Q0
ϕi : Ni → Mi ϕj ∘ Mr = Nr ∘ ϕi r : i → j

ϕi ⟺

K K

0 K
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Quivers and Quiver Representations
 (continued)

• A morphism  of -reps is a  indexed family of linear maps 
  such that squares commute (i.e.,  for ) 


• All  are invertible  isomorphism


• All  are subspace inclusions   subrepn

ϕ : N → M Q Q0
ϕi : Ni → Mi ϕj ∘ Mr = Nr ∘ ϕi r : i → j

ϕi ⟺

ϕi ⟺ N ≤ M

K K

0 K
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Quivers and Quiver Representations
 (continued)

• If  and  are representations of , their direct sum is given by 
 with 

N M Q
(N ⊕ M)i := Ni ⊕ Mi (N ⊕ M)ij := Nij + Mij : Ni ⊕ Mi → Nj ⊕ Mj

R2 R2
[1 0

0 1]
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Quivers and Quiver Representations
 (continued)

• If  and  are representations of , their direct sum is given by 
 with 


• If  are subrepresentations of  such that  & , we 
say  is the (internal) direct sum of  and .

N M Q
(N ⊕ M)i := Ni ⊕ Mi (N ⊕ M)ij := Nij + Mij : Ni ⊕ Mi → Nj ⊕ Mj

P, N M Ni ∩ Pi = 0 Ni + Pi = Mi
M P N

R2 R2
[1 0

0 1]
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Quivers and Quiver Representations
 (continued)

• If  and  are representations of , their direct sum is given by 
 with 


• If  are subrepresentations of  such that  & , we 
say  is the (internal) direct sum of  and .


• The speaker (ahem) should now explain the example given below

N M Q
(N ⊕ M)i := Ni ⊕ Mi (N ⊕ M)ij := Nij + Mij : Ni ⊕ Mi → Nj ⊕ Mj

P, N M Ni ∩ Pi = 0 Ni + Pi = Mi
M P N

R2 R2
[1 0

0 1]
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Quivers and Quiver Representations
 (continued)

• If  and  are representations of , their direct sum is given by 
 with 


• If  are subrepresentations of  such that  & , we 
say  is the (internal) direct sum of  and .


• The speaker (ahem) should now explain the example given below

N M Q
(N ⊕ M)i := Ni ⊕ Mi (N ⊕ M)ij := Nij + Mij : Ni ⊕ Mi → Nj ⊕ Mj

P, N M Ni ∩ Pi = 0 Ni + Pi = Mi
M P N

R2 R2
[1 0

0 1]Yeah, YOU!
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Decomposition of Quiver Reps
• We say a (nonzero) quiver repn  is indecomposable if it cannot be 

expressed as   with  nonzero subreps.
M

M ≅ N1 ⊕ N2 N1, N2 ≤ M

1 2 3Q =
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Decomposition of Quiver Reps
• We say a (nonzero) quiver repn  is indecomposable if it cannot be 

expressed as   with  nonzero subreps.


• Theorem (Krull Schmidt): Any repn  of a quiver  can be expressed as 
a direct sum of indecomposable subreps, uniquely up to reordering and 
isomorphisms of the summands.

M
M ≅ N1 ⊕ N2 N1, N2 ≤ M

M Q
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Decomposition of Quiver Reps
• We say a (nonzero) quiver repn  is indecomposable if it cannot be expressed as  

 with  nonzero subreps.


• Theorem (Krull Schmidt): Any repn  of a quiver  can be expressed as a direct sum of 
indecomposable subreps, uniquely up to reordering and isomorphisms of the summands.


• Note that this allows us to characterize any quiver repn by a multiset of indecomposable 
ones.

M
M ≅ N1 ⊕ N2 N1, N2 ≤ M
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Decomposition of Quiver Reps
• We say a (nonzero) quiver repn  is indecomposable if it cannot be expressed as  

 with  nonzero subreps.


• Theorem (Krull Schmidt): Any repn  of a quiver  can be expressed as a direct sum of 
indecomposable subreps, uniquely up to reordering and isomorphisms of the summands.


• Note that this allows us to characterize any quiver repn by a multiset of indecomposable 
ones.

M
M ≅ N1 ⊕ N2 N1, N2 ≤ M

M Q

• Example: If  is an  quiver, 
indecomposables correspond to 
subintervals of , and any repn  of  
is isomorphic to some 

 

Q An

[1,n] M Q

MQ([i1, j1]) ⊕ . . . ⊕ MQ([il, jl])
1 2 3Q =
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Decomposition of Quiver Reps
• We say a (nonzero) quiver repn  is indecomposable if it cannot be expressed as  

 with  nonzero subreps.


• Theorem (Krull Schmidt): Any repn  of a quiver  can be expressed as a direct sum of 
indecomposable subreps, uniquely up to reordering and isomorphisms of the summands.


• Note that this allows us to characterize any quiver repn by a multiset of indecomposable 
ones.

M
M ≅ N1 ⊕ N2 N1, N2 ≤ M

M Q

• Example: If  is an  quiver, indecomposables correspond to 
subintervals of , and any repn  of  is isomorphic to some 

 


•  quivers are the smallest Dynkin quivers having 
indecomposable representations involving 2-dimensional vector 
spaces.

Q An
[1,n] M Q

MQ([i1, j1]) ⊕ . . . ⊕ MQ([il, jl])

D4

1 2 3Q =
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Decomposition of Quiver Reps
• We say a (nonzero) quiver repn  is indecomposable if it cannot be expressed as  

 with  nonzero subreps.


• Theorem (Krull Schmidt): Any repn  of a quiver  can be expressed as a direct sum of 
indecomposable subreps, uniquely up to reordering and isomorphisms of the summands.


• Note that this allows us to characterize any quiver repn by a multiset of indecomposable 
ones.

M
M ≅ N1 ⊕ N2 N1, N2 ≤ M

M Q

• Example: If  is an  quiver, indecomposables correspond to 
subintervals of , and any repn  of  is isomorphic to some 

 


•  quivers are the smallest Dynkin quivers having indecomposable 
representations involving 2-dimensional vector spaces.


• What are  and Dynkin quivers?

Q An
[1,n] M Q

MQ([i1, j1]) ⊕ . . . ⊕ MQ([il, jl])

D4

An, Dn 1 2 3Q =
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Dynkin Quivers & Diagrams
2 infinite families,  & , + 3 exceptions, An Dn E6, E7, E8

 denotes the total # of vertices in each casen
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Gabriel’s Theorem
Gabriel’s theorem tells us what makes Dynkin Quivers special
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Gabriel’s Theorem
Gabriel’s theorem tells us what makes Dynkin Quivers special

• Funky Fresh Fact: The Dynkin quivers  are exactly the ones having only 
finitely many (isomorphism classes of) indecomposable representations.

Q
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Gabriel’s Theorem
Gabriel’s theorem tells us what makes Dynkin Quivers special

• Funky Fresh Fact: The Dynkin quivers  are exactly the ones having only 
finitely many (isomorphism classes of) indecomposable representations.


• Funkier Fresh Fact: Nonisomorphic indecomposable representations of  
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Gabriel’s Theorem
Gabriel’s theorem tells us what makes Dynkin Quivers special

• Funky Fresh Fact: The Dynkin quivers  are exactly the ones having only 
finitely many (isomorphism classes of) indecomposable representations.


• Funkier Fresh Fact: Nonisomorphic indecomposable representations of  
have distinct dimension vectors.


• Funkiest Fresh Fact: The dimension vectors of the indecomposable repns 
of  are exactly the positive root vectors of the corresponding root 
system.


• Importantly, the indecomposables’ dimension vectors can be described 
completely combinatorially, especially in types 

Q

Q

Q

An, Dn
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Gabriel’s Theorem
Gabriel’s theorem tells us what makes Dynkin Quivers special

• Funky Fresh Fact: The Dynkin quivers  are exactly the ones having only finitely 
many (isomorphism classes of) indecomposable representations.


• Funkier Fresh Fact: Nonisomorphic indecomposable representations of  have 
distinct dimension vectors.


• Funkiest Fresh Fact: The dimension vectors of the indecomposable repns of  are 
exactly the positive root vectors of the corresponding root system.


• Importantly, the indecomposables’ dimension vectors can be described 
completely combinatorially, especially in types 


• This allows us to characterize any representation of  up to isomorphism by an 
associated multiset of indecomposable dimension vectors  positive roots

Q

Q

Q

An, Dn

Q
⟺
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The Space of Quiver Reps
Q: How does one express the datum of a quiver repn concretely?

• Consider a quiver  and a dimension vector  of it.Q = (Q0, Q1, s, t) d ∈ ℤQ0
≥0
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The Space of Quiver Reps
Q: How does one express the datum of a quiver repn concretely?

• Consider a quiver  and a dimension vector  of it.Q = (Q0, Q1, s, t) d ∈ ℤQ0
≥0

•
Define   RepQ(d) := ∏

r∈Q1:i→j

Matdj,di
(𝕂)
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The Space of Quiver Reps
Q: How does one express the datum of a quiver repn concretely?

• Consider a quiver  and a dimension vector  of it.Q = (Q0, Q1, s, t) d ∈ ℤQ0
≥0

•
Define   RepQ(d) := ∏

r∈Q1:i→j

Matdj,di
(𝕂)

• To each point , we can associate a quiver repn  of  
having dimension vector  via , and 

(Mr)r∈Q1
∈ RepQ(d) M Q

d Mi := 𝕂di M[r] = Mr : 𝕂di → 𝕂dj
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The Space of Quiver Reps
Q: How does one express the datum of a quiver repn concretely?

• Consider a quiver  and a dimension vector  of it.Q = (Q0, Q1, s, t) d ∈ ℤQ0
≥0

•
Define   RepQ(d) := ∏

r∈Q1:i→j

Matdj,di
(𝕂)

• To each point , we can associate a quiver repn  of  having 
dimension vector  via , and 


• We can define an equivalence relation on  by 
.

(Mr)r∈Q1
∈ RepQ(d) M Q

d Mi := 𝕂di M[r] = Mr : 𝕂di → 𝕂dj

RepQ(d)
(Mr)r∈Q1

∼ (Nr)r∈Q1
⟺ M ≅ N
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The Space of Quiver Reps
Q: How does one express the datum of a quiver repn concretely?

• Consider a quiver  and a dimension vector  of it.Q = (Q0, Q1, s, t) d ∈ ℤQ0
≥0

•
Define   RepQ(d) := ∏

r∈Q1:i→j

Matdj,di
(𝕂)

• To each point , we can associate a quiver repn  of  having dimension vector  
via , and 


• We can define an equivalence relation on  by .


• Every representation of  with dimension vector  is isomorphic to a quiver repn constructed in this way

(Mr)r∈Q1
∈ RepQ(d) M Q d

Mi := 𝕂di M[r] = Mr : 𝕂di → 𝕂dj

RepQ(d) (Mr)r∈Q1
∼ (Nr)r∈Q1

⟺ M ≅ N

Q d
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Canonical Decomposition for Dynkin Q
Last slide, we constructed a space  of quiver repsRepQ(d)
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Canonical Decomposition for Dynkin Q
Last slide, we constructed a space  of quiver repsRepQ(d)

• Funky Fresh Fact Esquire: When  is a Dynkin quiver, for any , there are 
only finitely many equivalence classes, and among them, there’s a unique 
equivalence class which is an open dense subset of . 

Q d

RepQ(d)
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Canonical Decomposition for Dynkin Q
Last slide, we constructed a space  of quiver repsRepQ(d)

• Funky Fresh Fact Esquire: When  is a Dynkin quiver, for any , there are 
only finitely many equivalence classes, and among them, there’s a unique 
equivalence class which is an open dense subset of . 


• Any representation of  corresponding to a point in this equivalence class 
is known as the rigid representation of  with dim vector .

Q d

RepQ(d)

Q
Q d
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Canonical Decomposition for Dynkin Q
Last slide, we constructed a space  of quiver repsRepQ(d)

• Funky Fresh Fact Esquire: When  is a Dynkin quiver, for any , there are 
only finitely many equivalence classes, and among them, there’s a unique 
equivalence class which is an open dense subset of . 


• Any representation of  corresponding to a point in this equivalence class 
is known as the rigid representation of  with dim vector .


• Thus, we have a pipeline, , which 
takes in a quiver and dim vector and outputs a multiset of 
indecomposables  positive roots.

Q d

RepQ(d)

Q
Q d

(Q, d) → rigid ∈ RepQ(d)/ ∼ → {Mα}

⟺
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Canonical Decomposition for Dynkin Q
Last slide, we constructed a space  of quiver repsRepQ(d)

• Funky Fresh Fact Esquire: When  is a Dynkin quiver, for any , there are only 
finitely many equivalence classes, and among them, there’s a unique equivalence 
class which is an open dense subset of . 


• Any representation of  corresponding to a point in this equivalence class is 
known as the rigid representation of  with dim vector .


• Thus, we have a pipeline, , which takes 
in a quiver and dim vector and outputs a multiset of indecomposables  
positive roots.


• The resulting decomposition of the rigid representation into indecomposables is 
called the canonical decomposition of 

Q d

RepQ(d)

Q
Q d

(Q, d) → rigid ∈ RepQ(d)/ ∼ → {Mα}
⟺

(Q, d)

34



Canonical Decomposition for Dynkin Q
Last slide, we constructed a space  of quiver repsRepQ(d)

• Funky Fresh Fact Esquire: When  is a Dynkin quiver, for any , there are only finitely many 
equivalence classes, and among them, there’s a unique equivalence class which is an open 
dense subset of . 


• Any representation of  corresponding to a point in this equivalence class is known as the 
rigid representation of  with dim vector .


• Thus, we have a pipeline, , which takes in a quiver 
and dim vector and outputs a multiset of indecomposables  positive roots.


• The resulting decomposition of the rigid representation into indecomposables is called the 
canonical decomposition of 


• Funky Fact: Every indecomposable repn of  is the canonical decomposition for its own 
dimension vector.

Q d

RepQ(d)

Q
Q d

(Q, d) → rigid ∈ RepQ(d)/ ∼ → {Mα}
⟺

(Q, d)

Q
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Combinatorial Rules in types An, Dn
Big Picture: How do the combinatorial rules work?
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Combinatorial Rules in types An, Dn
Big Picture: How do the combinatorial rules work?

• We use the data  to construct, column by column, a diagram of boxes 
in the plane

(Q, d)
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Combinatorial Rules in types An, Dn
Big Picture: How do the combinatorial rules work?

• We use the data  to construct, column by column, a diagram of boxes 
in the plane


• We can then dissect this diagram “row-wise” into a collection of pieces/
smaller diagrams, each corresponding to indecomposable dimension vectors

(Q, d)
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Combinatorial Rules in types An, Dn
Big Picture: How do the combinatorial rules work?

• We use the data  to construct, column by column, a diagram of boxes 
in the plane


• We can then dissect this diagram “row-wise” into a collection of pieces/
smaller diagrams, each corresponding to indecomposable dimension vectors


• The resulting multiset of pieces/smaller diagrams realizes the canonical 
decomposition of 

(Q, d)

(Q, d)
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Combinatorial Rules in types An, Dn
Big Picture: How do the combinatorial rules work?

• We use the data  to construct, column by column, a diagram of boxes 
in the plane


• We can then dissect this diagram “row-wise” into a collection of pieces/
smaller diagrams, each corresponding to indecomposable dimension vectors


• The resulting multiset of pieces/smaller diagrams realizes the canonical 
decomposition of 


• To figure out which pieces correspond to which indecomposables, we can 
just apply to rule to indecomposable dimension vectors, and see what the 
resulting piece/diagram looks like

(Q, d)

(Q, d)

40



Let’s jump into the details of the rules!
(Diagram Construction and dissection)

• Type : https://www.desmos.com/calculator/yn2vabtmxh 


• Type : https://www.desmos.com/calculator/uyyq6kztqy 

An

Dn

41
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