Classical Invariant Theory II

Arianna Doran

These scribe notes are based on a talk given by Ian Cavey.

Consider a reductive group acting on a complex vector space, which we can denote as:

$$
G \curvearrowright V \simeq \mathbb{C}^{n}
$$

Theorem 0.1 (Hilbert's Finiteness Theorem). The ring of invariants $\mathbb{C}[V]^{G}$ is a finitely generated graded algebra.

There exists finitely many homogeneous invariant polynomials f_{1}, \ldots, f_{k} such that any invariant polynomial can be expressed as a polynomial in f_{1}, \ldots, f_{k} :

$$
\forall g \in \mathbb{C}[V]^{G}, g=\sum c f_{1}^{a_{1}} \ldots f_{k}^{a_{k}}
$$

The ideal I generated by the positive degree invariants in $\mathbb{C}[V]^{G}$ is called a homogeneous ideal and can be denoted as: $I=\left\langle\mathbb{C}[V]_{>0}^{G}\right\rangle \subseteq \mathbb{C}[V]$.

The action $G \curvearrowright \mathbb{C}[V]$ can be decomposed into $G \curvearrowright \mathbb{C}[V]_{d}$ where $\mathbb{C}[V]_{d}$ is the vector space of homogeneous polynomials of degree d. For a group element $g \in G$, the action on a variable x_{i} is given by a linear combination of the variables x_{j}, with coefficients a_{j} depending on g :

$$
g: x_{i} \leftarrow \sum a_{j} x_{j}
$$

The generators of the ideal I automatically generate the entire ring of invariants $\mathbb{C}[V]^{G}$.

Theorem 0.2 (Hilbert Basis Theorem). If I is an ideal in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$, then I is finitely generated.

There exists a finite set of polynomials g_{1}, \ldots, g_{k} such that $I=\left\langle g_{1}, \ldots, g_{k}\right\rangle$. A ring is Noetherian if any ascending chain of ideals $\left\langle g_{1}\right\rangle \subsetneq\left\langle g_{1}, g_{2}\right\rangle \subsetneq \ldots \subsetneq$ $\left\langle g_{1}, \ldots, g_{k}\right\rangle$ terminates in a finite number of steps, where $\left\langle g_{1}, \ldots, g_{k}\right\rangle=I$.

The vanishing locus $V(I)$ of an ideal I consists of all the points in V where all polynomials in I vanish, that is, they take the value zero. We can denote this as $V(I) \leq V \simeq \mathbb{C}^{n}$. So for a point $v \in V, v \in V(I) \Leftrightarrow \forall f \in I, f(v)=0$.

As an example, consider $S_{n} \curvearrowright \mathbb{C}^{n}$ The invariant ring under this action is generated by the elementary symmetric polynomials $e_{1}, \ldots e_{n}$ where $e_{j}=$ $\sum_{1 \leq i_{1}<\ldots<i_{j} \leq n} x_{i_{1} \ldots} \ldots x_{i_{j}}$. Therefore,

$$
\mathbb{C}\left[x_{1}, \ldots x_{n}\right]^{S_{n}}=\mathbb{C}\left[e_{1}, \ldots e_{n}\right]
$$

Observe that the zero vector $\overrightarrow{0} \in V(I)$ always belongs to $V(I)$ for any $G \curvearrowright V$. For the ideals generated by $e_{1}, . . e_{n},\{\overrightarrow{0}\}=V(I)$, that is, the zero vector is an element of $V(I)$ and $V(I)$ contains only the zero vector. This can be shown by looking a vector $v=\left(v_{1}, \ldots, v_{n}\right) \in V(I): e_{1}\left(v_{1}, \ldots, v_{n}\right)=\ldots=e_{n}\left(v_{1}, \ldots, v_{n}\right)=0$ which implies that the symmetric polynomials vanish at v. Now, consider the polynomial:
$\left(y+v_{1}\right) \ldots\left(y+v_{n}\right)=y^{n}+y^{n-1}\left(v_{1}+v_{2}+\ldots+v_{n}\right)+\ldots+y^{n-j} e_{j}(v)+\ldots+e_{n}(v)$
If we set the coefficients $e_{1}(v)=0, \ldots, e_{n}(v)=0$, the polynomial simplifies to $y^{n}=0$, which implies that $v_{1}=\ldots=v_{n}=0$. So, v must be $\overrightarrow{0}$ and $v\left(\left\langle e_{1}, \ldots, e_{n}\right\rangle\right)=\overrightarrow{0}$ must be the vanishing locus of the ideal generated by the elementary symmetric polynomials e_{1}, \ldots, e_{n}.

To understand which points $v \in V$ belong to the vanishing locus $V(I)$, we can rephrase the problem in terms of orbits under the group action. We know that $\overrightarrow{0}$ belongs to $V(I)$, since all invariant polynomials in I vanish at $\overrightarrow{0}$. The key observation is that if $v \in V(I)$, then the entire orbit $\overline{G \cdot v}$ under the group action is contained in $V(I)$. This is because if a function $f \equiv c$ on a subset $X \subseteq V$ where c is a constant, then $f \equiv c$ on the Zariski closure \bar{X} of that subset.

Specifically, if $\overline{G \cdot v} \ni \overrightarrow{0}$ then $G \cdot v \subseteq V(I)$. This is because any positive degree invariant polynomial $f \in \mathbb{C}[V]_{>0}^{G}$ vanishes at $\overrightarrow{0}$ on the orbit $\left.f\right|_{G \cdot v} \equiv 0$ and also on its closure $\overline{G \cdot v}$.

Theorem 0.3 (Hilbert's Theorem). The vanishing locus $V(I)$ is the union of all orbits whose closures contain the origin $\overrightarrow{0}$:

$$
V(I)=\bigcup_{\overrightarrow{G \cdot v} \ni \overrightarrow{0}} v
$$

The observation described above is only half of the theorem: if the closure of an orbit $\overline{G \cdot v}$ contains $\overrightarrow{0}$, then the entire orbit $G \cdot v$ is contained in $V(I)$.
Corollary 0.3.1. If $|G|<\infty, V(I)=\overrightarrow{0}$
The orbit of any point $v \neq \overrightarrow{0}$ under a finite group action cannot have $\overrightarrow{0}$ in its closure.

For two points $v, w \in V$ which lie in distinct G-orbits, does there exist an invariant polynomial $f \in \mathbb{C}[V]^{G}$ such that $f(v) \neq f(w)$? If such a polynomial does not exist, that means that the closures of their orbits intersect, so G. $v, G \cdot w$ are distinct $\Leftrightarrow \overline{G \cdot v} \cap \overline{G \cdot w}=\emptyset$.

Consider the action of the multiplicative group \mathbb{C}^{*} on \mathbb{C}^{3} defined by t. $(x, y, z)=\left(t^{-1} x, y, t z\right)$. The invariant ring under this action is generated by y and $x z$, so $\mathbb{C}[x, y, z]^{\mathbb{C}^{*}}=\mathbb{C}[y, x z]$. For the point $(1,0,1)$, it's orbit under the \mathbb{C}^{*} action traces out a hyperbola in the $x z$-plane, as shown in Figure 1, because $\left(t^{-1} x\right)(t z)=x z$.

Figure 1: Orbit of $(1,0,1)$
The behavior of orbits under the group action $G \curvearrowright V$ and their relation to the origin $\overrightarrow{0}$ can be classified into three categories:

1. Unstable points: Points v are considered unstable if the closure of their G-orbit contains the origin $\overrightarrow{0}$, i.e., $\overline{G \cdot v} \ni \overrightarrow{0}$.
2. Semistable points: Points v are considered semistable if their G-orbits do not contain $\overrightarrow{0}$ in their closure but they can still be distinguished by some invariant polynomials.
3. Stable points: Points v are stable if their stabilizer under the group action is finite and their G-orbit is closed, meaning the point can be distinguished by invariant polynomials. Formally, $v \in V$ is stable if $\operatorname{stab}(v) \leq G$ is finite and $G \cdot v=\overline{G \cdot v}$.

In the example shown by Figure 1, the points can be classified as follows:

- Semistable points: Points that do not lie on the x-axis or z-axis.
- Stable points: Points forming the complement of the $y z$-plane and $x z$ plane. These points have both positive and negative weights, with a finite stabilizer.
- Unstable points: Points on the x-axis and z-axis as $V(I)=x$-axis \cup z-axis characterizes the unstable points.

For an infinite group G acting on V, we characterize points in V based off of their stability:

- V^{S} denotes the set of stable points in V.
- $V^{S S}$ denotes the set of semistable points in V.
- V^{u} denotes the set of unstable points in V.

Also note the following relations:

- The union of semistable and unstable points covers the entire space V : $V=V^{S S} \sqcup V^{u}$.
- The set of semistable points contains the set of stable points: $V^{S S} \supseteq$ V^{S}.

For the action of $\mathbb{C}^{*} \curvearrowright \mathbb{C}^{n}$ given by $t \cdot\left(x_{1}, \ldots, x_{n}\right)=\left(t^{a_{1}} x_{1}, \ldots, t^{a_{n}} x_{n}\right)$ with $a_{1} \leq \ldots \leq a_{n} \in \mathbb{Z}$ the space V can be decomposed into three subspaces:

$$
V=V_{-} \oplus V_{0} \oplus V_{+}
$$

where:

- V_{-}corresponds to negative weights $a_{1} \ldots a_{i}<0$, representing components scaled by t^{-1}.
- V_{0} corresponds to zero weights $a_{i+1} \ldots a_{j}=0$, representing to components invariant under the action.
- V_{+}corresponds to positive weights $a_{j+1} \ldots a_{n}>0$, representing components scaled by t.

We can classify points under this \mathbb{C}^{*}-action as follows:

- Unstable points: Points in $V_{-} \cup V_{+}$, corresponding to components scaled t^{-1} or t (the x-axis and z-axis in the example).
- Semistable points: Points having both positive and negative weights, or any points with 0 -weights (not on the x-axis or z-axis in the example).
- Stable points: Points with both positive and negative weights, where the stabilizer is finite. These are points where both the x-coordinate and z-coordinate and non-zero in the example, forming the complement of $V_{0} \times\left(V_{-} \cup V_{+}\right)$

The Hilbert-Mumford criterion simplifies the problem by reducing the problem to considering $\mathbb{C}^{*} \subseteq G$, a one-parameter subgroup.

Theorem 0.4 (Hilbert-Mumford). A point, $v \in V$ is unstable (i.e., $\overrightarrow{0} \in$ $\overline{G \cdot v}) \Leftrightarrow \exists \mathbb{C}^{*} \subseteq G$ such that $\overrightarrow{0} \in \overline{\mathbb{C}^{*} \cdot v}$

