Classical Invariant Theory II

Arianna Doran

These scribe notes are based on a talk given by Ian Cavey.

Consider a reductive group acting on a complex vector space, which we
can denote as:
GV =C"

Theorem 0.1 (Hilbert’s Finiteness Theorem). The ring of invariants C[V]%
1s a finitely generated graded algebra.

There exists finitely many homogeneous invariant polynomials fi, ..., fx
such that any invariant polynomial can be expressed as a polynomial in

fla"'7fk:
Vg € C[V]%, g = Zc R

The ideal I generated by the positive degree invariants in C[V]% is called a
homogeneous ideal and can be denoted as: I = (C[V]S,) C C[V].

The action G ~ C[V] can be decomposed into G ~ C[V]; where C[V],
is the vector space of homogeneous polynomials of degree d. For a group
element g € GG, the action on a variable z; is given by a linear combination
of the variables x;, with coefficients a; depending on g:

gZIi%ZCLJ‘l’j

The generators of the ideal I automatically generate the entire ring of invari-
ants C[V]¢.

Theorem 0.2 (Hilbert Basis Theorem). If I is an ideal in C[xy,...,x,], then
I s finitely generated.

There exists a finite set of polynomials gy, ..., gx such that I = (g1, ..., gx).
A ring is Noetherian if any ascending chain of ideals (g1) € (g1,92) ...

= =

(g1, -.-, gx) terminates in a finite number of steps, where (g1, ..., gx) = 1.
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The vanishing locus V(1) of an ideal I consists of all the points in V' where
all polynomials in I vanish, that is, they take the value zero. We can denote
thisas V(1) <V ~C". So for apointv e V,ve V()< Vfel, f(v)=0.

As an example, consider S,, ~ C™ The invariant ring under this action

is generated by the elementary symmetric polynomials ey, ...e,, where e; =
> 74,...7;,. Therefore,

1<iy <..<ij<n
Clzy, ...zn]) = Cley, ...en]

Observe that the zero vector 0 € V(I) always belongs to V(I) for any G ~ V.
For the ideals generated by ey, ..e,,, {0} = V/(I), that is, the zero vector is an
element of V' (I) and V(1) contains only the zero vector. This can be shown by
looking a vector v = (vq,...,v,) € V(I): e1(vy, ..., vp) = ... = ep(vy,...,v,) =0
which implies that the symmetric polynomials vanish at v. Now, consider
the polynomial:

(y+v1)(y+v,) =y +y" (o1 +ve+ oo v) + o F Y e (V) e (V)

If we set the coefficients e;(v) = 0, ...,e,(v) = 0, the polynomial simplifies
to y® = 0, which implies that vy = ... = v, = 0. So, v must be 0 and
v((eq, ...,en)) = 0 must be the vanishing locus of the ideal generated by the
elementary symmetric polynomials ey, ..., e,,.

To understand which points v € V' belong to the vanishing locus V (1),
we can rephrase the problem in terms of orbits under the group action. We
know that 0 belongs to V(I), since all invariant polynomials in I vanish at
0. The key observation is that if v € V/(I), then the entire orbit G - v under
the group action is contained in V' (I). This is because if a function f = c on
a subset X C V where c is a constant, then f = ¢ on the Zariski closure X
of that subset.

Specifically, if G-v 3 0 then G- v C V(I). This is because any positive
degree invariant polynomial f € C[V]%, vanishes at 0 on the orbit f|g., =0
and also on its closure G - v.

Theorem 0.3 (Hilbert’s Theorem). The vanishing locus V (I) is the union
of all orbits whose closures contain the origin 0:

v = J v
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The observation described above is only half of the theorem: if the closure
of an orbit G - v contains 0 , then the entire orbit G - v is contained in V'([).

Corollary 0.3.1. If |G| < 00, V(I) =0

The orbit of any point v # 0 under a finite group action cannot have 0 in
its closure.

For two points v, w € V which lie in distinct G-orbits, does there exist an
invariant polynomial f € C[V]¢ such that f(v) # f(w)? If such a polynomial
does not exist, that means that the closures of their orbits intersect, so G -
v,G - w are distinct & G-vNG-w = 0.

Consider the action of the multiplicative group C* on C? defined by ¢ -
(z,y,2) = (t'z,y,tz). The invariant ring under this action is generated by
y and 2z, so Clz,y, 2] = Cly,zz]. For the point (1,0,1), it’s orbit under
the C* action traces out a hyperbola in the xz-plane, as shown in Figure 1,
because (t7'z)(tz) = z=2.

|

Figure 1: Orbit of (1,0,1)

The behavior of orbits under the group action G ~ V and their relation
to the origin 0 can be classified into three categories:

1. Unstable points: Points v are considered unstable if the closure of their
G-orbit contains the origin 0, i.e.,G - v 3 0.

2. Semistable points: Points v are considered semistable if their G-orbits
do not contain 0 in their closure but they can still be distinguished by
some invariant polynomials.

3. Stable points: Points v are stable if their stabilizer under the group
action is finite and their G-orbit is closed, meaning the point can be
distinguished by invariant polynomials. Formally, v € V is stable if
stab(v) < G is finite and G-v =G - v .
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In the example shown by Figure 1, the points can be classified as follows:
e Semistable points: Points that do not lie on the z-axis or z-axis.

e Stable points: Points forming the complement of the yz-plane and xz-
plane. These points have both positive and negative weights, with a
finite stabilizer.

e Unstable points: Points on the z-axis and z-axis as V() = z-axis U
z-axis characterizes the unstable points.

For an infinite group G acting on V| we characterize points in V' based
off of their stability:

e V5 denotes the set of stable points in V.

e V99 denotes the set of semistable points in V.
e /" denotes the set of unstable points in V.
Also note the following relations:

e The union of semistable and unstable points covers the entire space V:

V=v>uve

e The set of semistable points contains the set of stable points: V% D
VS,

For the action of C* ~ C™ given by t- (x1, ..., z,) = (t" 21, ..., t*x,) with
a; < ... < a, € Z the space V can be decomposed into three subspaces:

V == V_ @ % @ V+
where:

e I corresponds to negative weights a;...a; < 0, representing compo-
nents scaled by ¢!

e 1 corresponds to zero weights a;1;...a; = 0, representing to compo-
nents invariant under the action.

e V. corresponds to positive weights a;;...a, > 0, representing compo-
nents scaled by t.



We can classify points under this C*-action as follows:

e Unstable points: Points in V_UV, , corresponding to components scaled
t=! or t (the z-axis and z-axis in the example).

e Semistable points: Points having both positive and negative weights, or
any points with 0-weights (not on the z-axis or z-axis in the example).

e Stable points: Points with both positive and negative weights, where
the stabilizer is finite. These are points where both the x-coordinate
and z-coordinate and non-zero in the example, forming the complement

of Vo x (V_UVL)

The Hilbert-Mumford criterion simplifies the problem by reducing the
problem to considering C* C (G, a one-parameter subgroup.

Theorem 0.4 (Hilbert-Mumford). A point, v € V is unstable (i.e., 0 €
G-v) < dC* C G such that 0 € C* - v



