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Consider a reductive group acting on a complex vector space, which we
can denote as:

G ↷ V ≃ Cn

Theorem 0.1 (Hilbert’s Finiteness Theorem). The ring of invariants C[V ]G

is a finitely generated graded algebra.

There exists finitely many homogeneous invariant polynomials f1, ..., fk
such that any invariant polynomial can be expressed as a polynomial in
f1, ..., fk:

∀g ∈ C[V ]G, g =
∑

cfa1
1 ...fak

k

The ideal I generated by the positive degree invariants in C[V ]G is called a
homogeneous ideal and can be denoted as: I = ⟨C[V ]G>0⟩ ⊆ C[V ].

The action G ↷ C[V ] can be decomposed into G ↷ C[V ]d where C[V ]d
is the vector space of homogeneous polynomials of degree d. For a group
element g ∈ G, the action on a variable xi is given by a linear combination
of the variables xj, with coefficients aj depending on g:

g : xi ←
∑

ajxj

The generators of the ideal I automatically generate the entire ring of invari-
ants C[V ]G.

Theorem 0.2 (Hilbert Basis Theorem). If I is an ideal in C[x1, ..., xn], then
I is finitely generated.

There exists a finite set of polynomials g1, ..., gk such that I = ⟨g1, ..., gk⟩.
A ring is Noetherian if any ascending chain of ideals ⟨g1⟩ ⊊ ⟨g1, g2⟩ ⊊ ... ⊊
⟨g1, ..., gk⟩ terminates in a finite number of steps, where ⟨g1, ..., gk⟩ = I.
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The vanishing locus V (I) of an ideal I consists of all the points in V where
all polynomials in I vanish, that is, they take the value zero. We can denote
this as V (I) ≤ V ≃ Cn. So for a point v ∈ V , v ∈ V (I)⇔ ∀f ∈ I, f(v) = 0.

As an example, consider Sn ↷ Cn The invariant ring under this action
is generated by the elementary symmetric polynomials e1, ...en where ej =∑
1≤i1<...<ij≤n

xi1 ...xij . Therefore,

C[x1, ...xn]
Sn = C[e1, ...en]

Observe that the zero vector 0⃗ ∈ V (I) always belongs to V (I) for any G ↷ V .
For the ideals generated by e1, ..en, {⃗0} = V (I), that is, the zero vector is an
element of V (I) and V (I) contains only the zero vector. This can be shown by
looking a vector v = (v1, ..., vn) ∈ V (I): e1(v1, ..., vn) = ... = en(v1, ..., vn) = 0
which implies that the symmetric polynomials vanish at v. Now, consider
the polynomial:

(y+ v1)...(y+ vn) = yn + yn−1(v1 + v2 + ...+ vn) + ...+ yn−jej(v) + ...+ en(v)

If we set the coefficients e1(v) = 0, ..., en(v) = 0, the polynomial simplifies
to yn = 0, which implies that v1 = ... = vn = 0. So, v must be 0⃗ and
v(⟨e1, ..., en⟩) = 0⃗ must be the vanishing locus of the ideal generated by the
elementary symmetric polynomials e1, ..., en.

To understand which points v ∈ V belong to the vanishing locus V (I),
we can rephrase the problem in terms of orbits under the group action. We
know that 0⃗ belongs to V (I), since all invariant polynomials in I vanish at
0⃗. The key observation is that if v ∈ V (I), then the entire orbit G · v under
the group action is contained in V (I). This is because if a function f ≡ c on
a subset X ⊆ V where c is a constant, then f ≡ c on the Zariski closure X
of that subset.

Specifically, if G · v ∋ 0⃗ then G · v ⊆ V (I). This is because any positive
degree invariant polynomial f ∈ C[V ]G>0 vanishes at 0⃗ on the orbit f |G·v ≡ 0
and also on its closure G · v.

Theorem 0.3 (Hilbert’s Theorem). The vanishing locus V (I) is the union
of all orbits whose closures contain the origin 0⃗:

V (I) =
⋃

G·v∋0⃗

v
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The observation described above is only half of the theorem: if the closure
of an orbit G · v contains 0⃗ , then the entire orbit G · v is contained in V (I).

Corollary 0.3.1. If |G| <∞, V (I) = 0⃗

The orbit of any point v ̸= 0⃗ under a finite group action cannot have 0⃗ in
its closure.

For two points v, w ∈ V which lie in distinct G-orbits, does there exist an
invariant polynomial f ∈ C[V ]G such that f(v) ̸= f(w)? If such a polynomial
does not exist, that means that the closures of their orbits intersect, so G ·
v,G · w are distinct ⇔ G · v ∩G · w = ∅.

Consider the action of the multiplicative group C∗ on C3 defined by t ·
(x, y, z) = (t−1x, y, tz). The invariant ring under this action is generated by
y and xz, so C[x, y, z]C∗

= C[y, xz]. For the point (1, 0, 1), it’s orbit under
the C∗ action traces out a hyperbola in the xz-plane, as shown in Figure 1,
because (t−1x)(tz) = xz.

Figure 1: Orbit of (1, 0, 1)

The behavior of orbits under the group action G ↷ V and their relation
to the origin 0⃗ can be classified into three categories:

1. Unstable points: Points v are considered unstable if the closure of their
G-orbit contains the origin 0⃗, i.e.,G · v ∋ 0⃗.

2. Semistable points: Points v are considered semistable if their G-orbits
do not contain 0⃗ in their closure but they can still be distinguished by
some invariant polynomials.

3. Stable points: Points v are stable if their stabilizer under the group
action is finite and their G-orbit is closed, meaning the point can be
distinguished by invariant polynomials. Formally, v ∈ V is stable if
stab(v) ≤ G is finite and G · v = G · v .
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In the example shown by Figure 1, the points can be classified as follows:

• Semistable points: Points that do not lie on the x-axis or z-axis.

• Stable points: Points forming the complement of the yz-plane and xz-
plane. These points have both positive and negative weights, with a
finite stabilizer.

• Unstable points: Points on the x-axis and z-axis as V (I) = x-axis ∪
z-axis characterizes the unstable points.

For an infinite group G acting on V , we characterize points in V based
off of their stability:

• V S denotes the set of stable points in V .

• V SS denotes the set of semistable points in V .

• V u denotes the set of unstable points in V .

Also note the following relations:

• The union of semistable and unstable points covers the entire space V :
V = V SS ⊔ V u.

• The set of semistable points contains the set of stable points: V SS ⊇
V S.

For the action of C∗ ↷ Cn given by t · (x1, ..., xn) = (ta1x1, ..., t
anxn) with

a1 ≤ ... ≤ an ∈ Z the space V can be decomposed into three subspaces:

V = V− ⊕ V0 ⊕ V+

where:

• V− corresponds to negative weights a1...ai < 0, representing compo-
nents scaled by t−1.

• V0 corresponds to zero weights ai+1...aj = 0, representing to compo-
nents invariant under the action.

• V+ corresponds to positive weights aj+1...an > 0, representing compo-
nents scaled by t.
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We can classify points under this C∗-action as follows:

• Unstable points: Points in V−∪V+, corresponding to components scaled
t−1 or t (the x-axis and z-axis in the example).

• Semistable points: Points having both positive and negative weights, or
any points with 0-weights (not on the x-axis or z-axis in the example).

• Stable points: Points with both positive and negative weights, where
the stabilizer is finite. These are points where both the x-coordinate
and z-coordinate and non-zero in the example, forming the complement
of V0 × (V− ∪ V+)

The Hilbert-Mumford criterion simplifies the problem by reducing the
problem to considering C∗ ⊆ G, a one-parameter subgroup.

Theorem 0.4 (Hilbert-Mumford). A point, v ∈ V is unstable (i.e., 0⃗ ∈
G · v)⇔ ∃C∗ ⊆ G such that 0⃗ ∈ C∗ · v
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