Classical Invariant Theory

Arianna Doran

These scribe notes are based on a talk given by Ian Cavey.

Let

$$
G \curvearrowright \mathbb{C}^{n}
$$

This action of G on \mathbb{C}^{n} induces an action on the polynomial ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. Then, for a vector $v \in \mathbb{C}^{n}$ and a group element $g \in G$, the action of g on v results in a new vector w in \mathbb{C}^{n}. The induced action of G on the coordinate ring $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is then:

$$
(g \cdot \phi)(v)=\phi\left(g^{-1} \cdot v\right)
$$

where ϕ is a polynomial in $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$. For two group elements, $g_{1}, g_{2} \in G$ and a polynomial $\phi \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$:

$$
\left(g_{1} \cdot g_{2}\right) \cdot \phi(v)=g_{1} \cdot\left(g_{2} \cdot \phi\right)(v)=\left(g_{2} \cdot \phi\right)\left(g_{1}^{-1} \cdot v\right)=\phi\left(g_{2}^{-1} \cdot g_{1}^{-1} \cdot v\right)
$$

A polynomial $\phi \in \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ is G-invariant if $g \cdot \phi=\phi$ for all $g \in G$. The set made from all G-invariant polynomials then forms a subalgebra denoted by:

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{G}
$$

where $\phi+\psi, \phi \cdot \psi, c \cdot \psi$ are all G-invariant when ϕ and ψ are invariant polynomials.

For example, consider the symmetric group

$$
S_{n} \curvearrowright \mathbb{C}^{n}
$$

by permuting coordinates. The coordinate ring of symmetric polynomials $\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}$ consists of the polynomials which are invariant under all permutations of x_{1}, \ldots, x_{n}. Symmetric polynomials can be expressed as the elementary symmetric polynomials $e_{1}\left(x_{1} \ldots x_{n}\right), \ldots, e_{n}\left(x_{1} \ldots x_{n}\right)$ where
$e_{1}\left(x_{1} \ldots x_{n}\right)$ is the sum $x_{1}+\cdots+x_{n}$ and $e_{n}\left(x_{1} \ldots x_{n}\right)$ is the product $x_{1} \ldots x_{n}$ and therefore:

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right]^{S_{n}}=\mathbb{C}\left[e_{1}, \ldots, e_{n}\right]
$$

For some motivation, let's try to understand intrinsic properties, properties that are invariant under the action of a group G. Think of $G \curvearrowright \mathbb{C}^{n}$ as changes of coordinates. As an example let's use $S L_{2} \curvearrowright \mathbb{C}$ which is the projection of changing coordinates. $S L_{2}$ consists of 2×2 matrices with determinant 1 , and $S L_{2} \curvearrowright \mathbb{C}$ by fractional linear transformations:

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \cdot x=\frac{\alpha x+\beta}{\gamma x+\delta}
$$

We get this fractional linear transformation from $S L_{2} \curvearrowright \mathbb{C}$ in the normal way. Given a matrix

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in S L_{2}
$$

it acts on a vector $\binom{x}{y} \in \mathbb{C}^{2}$ by usual matrix multiplication:

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{ll}
\alpha x & \beta y \\
\gamma x & \delta y
\end{array}\right)
$$

When considering $S L_{2} \curvearrowright \mathbb{P}^{2} \supseteq \mathbb{C}$ where $y=1$,

$$
\mathbb{P} \mathbb{C}^{2}=\left\{\binom{x}{y} \in \mathbb{C}^{2} \backslash\left\{\binom{0}{0}\right\}\right\}
$$

In projective spaces, points are equivalent up to scalar multiplication. Therefore:

$$
\binom{x}{y} \sim\binom{t x}{t y} \text { for any } t \neq 0
$$

When we set $y=1$ the action of the matrix becomes

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \cdot\binom{x}{1}=\left(\begin{array}{ll}
\alpha x & \beta \\
\gamma x & \delta
\end{array}\right) \sim\binom{\frac{\alpha x+\beta}{\gamma x+\delta}}{1}
$$

So, the group $S L_{2}$ acts on the affine line \mathbb{C} by fractional linear transformations.

Considering quadratic forms $a x^{2}+b x y+c y^{2}$:

$$
S L_{2} \curvearrowright \mathbb{C}_{a} \oplus \mathbb{C}_{b} \oplus \mathbb{C}_{c}
$$

where $\mathbb{C}_{a} \oplus \mathbb{C}_{b} \oplus \mathbb{C}_{c}$ are polynomials in x, leads to identifying invariant polynomials. We map the coefficients $(a, b, c) \mapsto a x^{2}+b x y+c y^{2}$. The transformation of the quadratic form under the action of a matrix $\left(\begin{array}{ll}\alpha & \beta \\ \gamma & \delta\end{array}\right)$ can be written as:

$$
\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \cdot\left(a x^{2}+b x+c\right)=a \bar{x}^{2}+b \bar{x}+c
$$

where

$$
\bar{x}=\frac{\alpha x+\beta}{\gamma x+\delta}
$$

Alternatively, we can also write this using coordinates:

$$
a \bar{x}^{2}+b \bar{x} \bar{y}+c \bar{y}^{2}
$$

where

$$
\bar{x}=\alpha x+\beta y, \bar{y}=\gamma x+\delta y
$$

We deduce this transformation from:

$$
\binom{\bar{x}}{\bar{y}}=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \cdot\binom{x}{y}
$$

Given the quadratic form $a x^{2}+b x y+c y^{2}$, we can represent this in matrix notation as:

$$
a x^{2}+b x y+c y^{2}=(x, y)\left(\begin{array}{cc}
a & \frac{b}{2} \\
\frac{b}{2} & c
\end{array}\right)\binom{x}{y}
$$

Under the action of $S L_{2}$, this quadratic form transforms via the matrix:

$$
(x, y)\left(\begin{array}{ll}
\alpha & \gamma \\
\beta & \delta
\end{array}\right)\left(\begin{array}{ll}
a & \frac{b}{2} \\
\frac{b}{2} & c
\end{array}\right)\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right)\binom{x}{y}
$$

From this, we find that

$$
\begin{gathered}
a \mapsto a \alpha^{2}+b \alpha \gamma+c \delta^{2} \\
b \mapsto 2 a \alpha \beta+b(\alpha \delta+\beta \gamma)+2 c \gamma \delta
\end{gathered}
$$

$$
c \mapsto a \beta^{2}+b \beta \delta+c \delta^{2}
$$

We also find that the polynomial discriminant $b^{2}-4 a c$ remains invariant under the group action:

$$
\mathbb{C}[a, b, c]^{S L_{2}}=\mathbb{C}\left[b^{2}-4 a c\right]
$$

