SPECHT MODULES (FROM LINEAR ALGEBRA)

SPEAKER: JAEWON MIN

Let G be a finite group. Define the group algebra of G over \mathbb{C} to be the algebra $\mathbb{C}[G]$ with basis $\{g \in G\}$ and multiplication given by

$$
\left(a_{1} g_{1}+\cdots+a_{k} g_{k}\right)\left(b_{1} h_{1}+\cdots+b_{\ell} h_{\ell}\right)=a_{1} b_{1} g_{1} h_{1}+\cdots+a_{k} b_{1} g_{k} h_{1}+\cdots+a_{k} b_{\ell} g_{k} h_{\ell}
$$

where $a_{i}, b_{i} \in \mathbb{C}$ and $h_{i}, g_{i} \in G$. Let V be a vector space over \mathbb{C}, and define

$$
\operatorname{Mat}(V):=\{\text { linear maps } V \rightarrow V\}, \operatorname{Mat}(n):=\{n \times n \text { complex matrices }\} .
$$

The following theorem connects the structure of $\mathbb{C}[G]$ with the finite-dimensional representation theory of G.

Theorem 0.1. Let G be a finite group, and let k denote the number of conjugacy classes of G. Then there exist vector spaces $V_{i}, 1 \leq i \leq k$ so that

$$
\mathbb{C}[G] \simeq_{\text {alg. }} \operatorname{Mat}\left(V_{1}\right) \times \cdots \times \operatorname{Mat}\left(V_{k}\right)
$$

This theorem can be proved using the Wedderburn-Artin Theorem and Maschke's Theorem.

Theorem 0.2 (Wedderburn-Artin Theorem). Let R be a finite-dimensional semisimple algebra over a field k. Then there exist division algebras D_{i} and integers n_{i} such that

$$
R \simeq \operatorname{Mat}_{n_{1}}\left(D_{1}\right) \times \cdots \times \operatorname{Mat}_{n_{k}}\left(D_{k}\right) .
$$

The D_{i} and n_{i} are uniquely determined up to isomorphism. If k is algebraically closed, then $D_{i}=k$ for all i.
Theorem 0.3 (Maschke's Theorem). Let G be a finite group. Then $\mathbb{C}[G]$ is semisimple. More generally, if k is a field such that the characteristic of k does not divide the order of G, then $k[G]$ is semisimple.

For example, let $G=S_{3}$. Then

$$
\mathbb{C}\left[S_{3}\right] \simeq_{\text {alg. }} \operatorname{Mat}\left(V_{\text {■ }}\right) \times \operatorname{Mat}\left(V_{\text {目 }}\right) \times \operatorname{Mat}\left(V_{\boxplus}\right),
$$

 1 , and V_{\boxplus} has dimension 2. In terms of matrices, we have that

$$
S:=\left\{\left[\begin{array}{llll}
a & 0 & 0 & 0 \\
0 & b & 0 & 0 \\
0 & 0 & c & d \\
0 & 0 & e & f
\end{array}\right]: a \neq 0, b \neq 0, c f-e d \neq 0\right\} \simeq_{\mathrm{alg}} \mathbb{C}\left[S_{3}\right] .
$$

The elements of S_{3} can be embedded in S in the following manner:

$$
\begin{aligned}
() \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] & (12) \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & S_{-\pi / 3} \\
0 & 0 & \\
(123) \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & R_{2 \pi / 3} \\
0 & 0 &
\end{array}\right] \\
(23) \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & S_{\pi / 3} \\
0 & 0 & 0 & 0
\end{array}\right] \\
0 & 1 & 0 & 0 \\
0 & 0 & R_{-\pi / 3} \\
0 & 0 & (132) &
\end{array}\right. & (123) \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & R_{\pi} \\
0 & 0 &
\end{array}\right]
\end{aligned}
$$

Here，

$$
R_{\theta}:=\left[\begin{array}{cc}
\cos (\theta) & \sin (\theta) \\
-\sin (\theta) & \cos (\theta)
\end{array}\right]
$$

is a rotation matrix and

$$
S_{\theta}:=\left[\begin{array}{cc}
\cos (2 \theta) & \sin (2 \theta) \\
\sin (2 \theta) & -\cos (2 \theta)
\end{array}\right]
$$

is a reflection matrix．Computing this embedding is difficult in general．
Note that S has a natural action on \mathbb{C}^{4} ．Under this action，we can see that

$$
V_{\mathrm{m}}=\left\{\left[\begin{array}{l}
a \\
0 \\
0 \\
0
\end{array}\right]\right\}, V_{\text {目 }}=\left\{\left[\begin{array}{l}
0 \\
b \\
0 \\
0
\end{array}\right]\right\}, V_{\text {甲 }}=\left\{\left[\begin{array}{l}
0 \\
0 \\
c \\
d
\end{array}\right]\right\} .
$$

The decomposition in Theorem 0.1 implies that groups with the same finite module categories should have isomorphic group algebras．For instance，while $\mathbb{Z}_{2} \times \mathbb{Z}_{2} \not \not 二 \mathbb{Z}_{4}$ ， both $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ and \mathbb{Z}_{4} have 4 irreducible one－dimensional representations（as they are both abelian of order 4）．Hence， $\mathbb{C}\left[\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right] \simeq \mathbb{C}\left[\mathbb{Z}_{4}\right] \simeq S$ ，where S is the space of diagonal 4×4 complex matrices．The embedding of $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ into S is：

$$
\begin{array}{ll}
(1,1) \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] & (1,1) \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
(1,-1) \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] & (1,1) \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]
\end{array}
$$

The embedding of \mathbb{Z}_{4} into S is:

$$
\begin{gathered}
1 \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
i \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & i & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -i
\end{array}\right]
\end{gathered}
$$

$$
\begin{aligned}
& -1 \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right] \\
& -i \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -i & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & i
\end{array}\right]
\end{aligned}
$$

The following is an important corollary of Theorem 0.1.
Corollary 0.4. Let G be a finite group and W a finite-dimensional irreducible representation of G. Then there exists $1 \leq i \leq k$ such that $W \simeq V_{i}$ as $\mathbb{C}[G]$-modules.

