SPECHT MODULES (FROM LINEAR ALGEBRA)

SPEAKER: JAEWON MIN

Let *G* be a finite group. Define the *group algebra* of *G* over \mathbb{C} to be the algebra $\mathbb{C}[G]$ with basis $\{g \in G\}$ and multiplication given by

 $(a_1g_1 + \dots + a_kg_k)(b_1h_1 + \dots + b_\ell h_\ell) = a_1b_1g_1h_1 + \dots + a_kb_1g_kh_1 + \dots + a_kb_\ell g_kh_\ell,$

where $a_i, b_i \in \mathbb{C}$ and $h_i, g_i \in G$. Let *V* be a vector space over \mathbb{C} , and define

 $Mat(V) := \{ linear maps V \to V \}, Mat(n) := \{ n \times n \text{ complex matrices} \}.$

The following theorem connects the structure of $\mathbb{C}[G]$ with the finite-dimensional representation theory of *G*.

Theorem 0.1. Let G be a finite group, and let k denote the number of conjugacy classes of G. Then there exist vector spaces V_i , $1 \le i \le k$ so that

$$\mathbb{C}[G] \simeq_{alg.} Mat(V_1) \times \cdots \times Mat(V_k).$$

This theorem can be proved using the Wedderburn-Artin Theorem and Maschke's Theorem.

Theorem 0.2 (Wedderburn-Artin Theorem). Let R be a finite-dimensional semisimple algebra over a field k. Then there exist division algebras D_i and integers n_i such that

$$R \simeq Mat_{n_1}(D_1) \times \cdots \times Mat_{n_k}(D_k).$$

The D_i and n_i are uniquely determined up to isomorphism. If k is algebraically closed, then $D_i = k$ for all i.

Theorem 0.3 (Maschke's Theorem). Let G be a finite group. Then $\mathbb{C}[G]$ is semisimple. More generally, if k is a field such that the characteristic of k does not divide the order of G, then k[G] is semisimple.

For example, let $G = S_3$. Then

$$\mathbb{C}[S_3] \simeq_{alg.} \operatorname{Mat}(V_{\mathrm{III}}) \times \operatorname{Mat}\left(V_{\underline{\sharp}}\right) \times \operatorname{Mat}\left(V_{\underline{\sharp}}\right),$$

where V_{IIII} , V_{H} , and V_{H} are the irreducible representations of S_3 , V_{IIII} , V_{H} both have dimension 1, and V_{H} has dimension 2. In terms of matrices, we have that

$$S := \left\{ \begin{bmatrix} a & 0 & 0 & 0 \\ 0 & b & 0 & 0 \\ 0 & 0 & c & d \\ 0 & 0 & e & f \end{bmatrix} : a \neq 0, \ b \neq 0, \ cf - ed \neq 0 \right\} \simeq_{\text{alg}} \mathbb{C}[S_3].$$

The elements of S_3 can be embedded in S in the following manner:

$$() \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(12) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & S_{-\pi/3} \end{bmatrix}$$

$$(123) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & R_{2\pi/3} \end{bmatrix}$$

$$(132) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & R_{-\pi/3} \end{bmatrix}$$

$$(123) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & R_{-\pi/3} \end{bmatrix}$$

$$(123) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & R_{\pi} \end{bmatrix}$$

Here,

$$R_{\theta} := \begin{bmatrix} \cos(\theta) & \sin(\theta) \\ -\sin(\theta) & \cos(\theta) \end{bmatrix}$$

is a rotation matrix and

$$S_{\theta} := \begin{bmatrix} \cos(2\theta) & \sin(2\theta) \\ \sin(2\theta) & -\cos(2\theta) \end{bmatrix}$$

is a reflection matrix. Computing this embedding is difficult in general.

Note that *S* has a natural action on \mathbb{C}^4 . Under this action, we can see that

$$V_{\rm IIII} = \left\{ \begin{bmatrix} a \\ 0 \\ 0 \\ 0 \end{bmatrix} \right\}, \ V_{\rm H} = \left\{ \begin{bmatrix} 0 \\ b \\ 0 \\ 0 \end{bmatrix} \right\}, \ V_{\rm H} = \left\{ \begin{bmatrix} 0 \\ 0 \\ c \\ d \end{bmatrix} \right\}.$$

The decomposition in Theorem 0.1 implies that groups with the same finite module categories should have isomorphic group algebras. For instance, while $\mathbb{Z}_2 \times \mathbb{Z}_2 \not\simeq \mathbb{Z}_4$, both $\mathbb{Z}_2 \times \mathbb{Z}_2$ and \mathbb{Z}_4 have 4 irreducible one-dimensional representations (as they are both abelian of order 4). Hence, $\mathbb{C}[\mathbb{Z}_2 \times \mathbb{Z}_2] \simeq \mathbb{C}[\mathbb{Z}_4] \simeq S$, where *S* is the space of diagonal 4×4 complex matrices. The embedding of $\mathbb{Z}_2 \times \mathbb{Z}_2$ into *S* is:

$$(1,1) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(1,1) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$(1,-1) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

$$(1,1) \rightarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

The embedding of \mathbb{Z}_4 into *S* is:

	$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$		$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0	0	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$
$1 \rightarrow$			$-1 \rightarrow$	$\begin{vmatrix} 0 \\ 0 \end{vmatrix}$	$-1 \\ 0$	$\frac{0}{1}$	$\begin{bmatrix} 0\\0 \end{bmatrix}$
	0 0 0	1		0	0	0	-1
$i \rightarrow$	1 0 0	0 0 0		[1	0	0	0
	$\begin{array}{ccc} 0 & i & 0 \\ 0 & 0 & 1 \end{array}$	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	-i ightarrow	$\begin{bmatrix} 0 \\ 0 \end{bmatrix}$	-i	0	$\begin{bmatrix} 0\\ 0 \end{bmatrix}$
	$\begin{bmatrix} 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0\\ -i \end{bmatrix}$		0	$0 \\ 0$	$-1 \\ 0$	$\begin{bmatrix} 0\\i \end{bmatrix}$

The following is an important corollary of Theorem 0.1.

Corollary 0.4. Let G be a finite group and W a finite-dimensional irreducible representation of G. Then there exists $1 \le i \le k$ such that $W \simeq V_i$ as $\mathbb{C}[G]$ -modules.