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Let G be a finite group. Define the group algebra of G over C to be the algebra C[G] with
basis {g ∈ G} and multiplication given by

(a1g1 + · · ·+ akgk)(b1h1 + · · ·+ bℓhℓ) = a1b1g1h1 + · · ·+ akb1gkh1 + · · ·+ akbℓgkhℓ,

where ai, bi ∈ C and hi, gi ∈ G. Let V be a vector space over C, and define

Mat(V ) := {linear maps V → V }, Mat(n) := {n× n complex matrices}.
The following theorem connects the structure of C[G] with the finite-dimensional repre-
sentation theory of G.

Theorem 0.1. Let G be a finite group, and let k denote the number of conjugacy classes of G.
Then there exist vector spaces Vi, 1 ≤ i ≤ k so that

C[G] ≃alg. Mat(V1)× · · · × Mat(Vk).

This theorem can be proved using the Wedderburn-Artin Theorem and Maschke’s The-
orem.

Theorem 0.2 (Wedderburn-Artin Theorem). Let R be a finite-dimensional semisimple algebra
over a field k. Then there exist division algebras Di and integers ni such that

R ≃ Matn1(D1)× · · · × Matnk
(Dk).

The Di and ni are uniquely determined up to isomorphism. If k is algebraically closed, then Di = k
for all i.

Theorem 0.3 (Maschke’s Theorem). Let G be a finite group. Then C[G] is semisimple. More
generally, if k is a field such that the characteristic of k does not divide the order of G, then k[G] is
semisimple.

For example, let G = S3. Then

C[S3] ≃alg. Mat (V )× Mat
(
V
)
× Mat

(
V

)
,

where V , V , and V are the irreducible representations of S3, V , V both have dimension
1, and V has dimension 2. In terms of matrices, we have that

S :=



a 0 0 0
0 b 0 0
0 0 c d
0 0 e f

 : a ̸= 0, b ̸= 0, cf − ed ̸= 0

 ≃alg C[S3].

The elements of S3 can be embedded in S in the following manner:
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() →


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



(123) →


1 0
0 1

0 0
0 0

0 0
0 0

R2π/3



(23) →


1 0
0 −1

0 0
0 0

0 0
0 0

Sπ/3



(12) →


1 0
0 −1

0 0
0 0

0 0
0 0

S−π/3



(132) →


1 0
0 1

0 0
0 0

0 0
0 0

R−π/3



(123) →


1 0
0 −1

0 0
0 0

0 0
0 0

Rπ


Here,

Rθ :=

[
cos(θ) sin(θ)
− sin(θ) cos(θ)

]
is a rotation matrix and

Sθ :=

[
cos(2θ) sin(2θ)
sin(2θ) − cos(2θ)

]
is a reflection matrix. Computing this embedding is difficult in general.

Note that S has a natural action on C4. Under this action, we can see that

V =



a
0
0
0


 , V =



0
b
0
0


 , V =



0
0
c
d


 .

The decomposition in Theorem 0.1 implies that groups with the same finite module
categories should have isomorphic group algebras. For instance, while Z2 × Z2 ̸≃ Z4,
both Z2 ×Z2 and Z4 have 4 irreducible one-dimensional representations (as they are both
abelian of order 4). Hence, C[Z2 ×Z2] ≃ C[Z4] ≃ S, where S is the space of diagonal 4× 4
complex matrices. The embedding of Z2 × Z2 into S is:

(1, 1) →


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



(1,−1) →


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



(1, 1) →


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1



(1, 1) →


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1


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The embedding of Z4 into S is:

1 →


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1



i →


1 0 0 0
0 i 0 0
0 0 −1 0
0 0 0 −i



−1 →


1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1



−i →


1 0 0 0
0 −i 0 0
0 0 −1 0
0 0 0 i


The following is an important corollary of Theorem 0.1.

Corollary 0.4. Let G be a finite group and W a finite-dimensional irreducible representation of
G. Then there exists 1 ≤ i ≤ k such that W ≃ Vi as C[G]-modules.
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