
RE: the exterior algebra and towards the crystal graph

To whom this may concern,
Abigail Price continued her discussion of “highest weights” and the representation the-

ory of GL(V ) where here V is a finite-dimensional vector space of dimension n over C.
This journal entry reviews what was discussed. I am exposing my knowledge (or lack
thereof) here in the hope that the reader will correct me either in person this summer or
otherwise.

Let us set some standard notation and terminology. The vector space Symm(Cn) is the
span of the tensors

(1) ei1 ⊗ ei2 ⊗ · · · ⊗ eim ,
where ej = (0, . . . , 0, 1, 0, . . . , 0)t is the j-th standard basis vector (with “1” in the j-th
coordinate and 0 elsewhere and “t” denotes transpose of a matrix so that ej is a column
vector). In this space we allow commutation, i.e., ei ⊗ ej = ej ⊗ ei. In this way, there is an
isomorphism of vector spaces

Symm(Cn) ∼= {homogeneous polynomials in x1, . . . , xn of degree m},
where the isomorphism sends ei1 ⊗ ei2 ⊗ · · · ⊗ eim 7→ xi1xi2 · · ·xim .

A more “high-class” way of operating is to work with Symm(V ) (i.e., work coordinate
and basis-free). One of the advantages of doing so is that one can define Symm(V ) in
terms of a “universal property” that makes the object unique up to isomorphism. To
construct the object, we should really work with the Tensor algebra and take relations so
that technically “e1⊗ e2” really is an equivalence class under the commutation relation, but
we’re by-passing this discussion here.

An algebra is a set S that has the structure of a vector space (vector addition and scalar
multiplication) and which is endowed with an additional product. While Symm(V ) is a
vector space, it is not an algebra. However

(2) Sym∗(V ) :=
⊕
m≥0

Symm(V )

is an algebra. Here
⊕

refers to direct sum of vector spaces. It is an infinite dimensional
vector space and the product is ⊗. Indeed, Sym∗(V ) ∼= C[x1, . . . , xn] as algebras; an ele-
ment of Sym∗(V ) is a finite linear combination of tensors as in (1) (for various m) – this is
all “direct sum” amounts to here.

Another important vector space is
∧m(Cn). This is defined as the span of “wedges”

(3) ei1 ∧ ei2 ∧ · · · ∧ eim .
Again, we impose relations where ej ∧ ej = 0 and ei ∧ ej = −ej ∧ ei. This implies that∧m Cn is the zero vector space if m > n. Thus, the exterior algebra is the finite-dimensional
algebra ∧

Cn :=
n⊕

m=0

m∧
(Cn).
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Once again, one can go higher class by rather speaking of
∧
V and

∧m V .
The algebras Sym∗(V ) and

∧
V are the high class way of speaking of “polynomials” and

of determinants/rank in linear algebra. As we now discuss, they also provide the main
basic examples of irreducible representations of GL(V ) = invertible linear operators of V
(i.e., isomorphisms of V with itself, a.k.a, n × n invertible matrices – if one is to be low
class).

Recall that a (linear) representation of a group G is a group homomorphism

(4) ρ : G→ GL(V );

it “represents” a group element to an invertible linear transformationM ∈ GL(V ) (a n×n
matrix) that eats vectors from V and spits out vectors of V . That is G “acts” on V by
g · v = ρ(g)v (the latter being matrix multiplication). Such actions of G on a vectors space
can always be rephrases as a homomorphism (4) and vice versa, so one interchangeably
refers to a representation of G as either a homomorphism ρ or simply as V .

The basic question of representation theory is to “determine” the “primes”, i.e., the
irreducible representations of G. These are the representations V for which there is no
{0} ( W ( V that is also acted upon by G. Just to show that this can happen, let
G = S3 = {123, 213, 132, 231, 312, 321} be the permutations of {1, 2, 3}. This forms the
“symmetric group on three letters”. Let G act on R3 by permuting the coordinates, e.g.,
231 ·(55, 66, 77) = (66, 77, 55). Notice that the set of points {(x1, x2, x3) ∈ R3 : x1+x2+x3 =
0} is a vector space, and is fixed under the action of S3. Thus R3 is not an irreducible rep-
resentation.

The other major problem (although not for this journal entry) is that of “factorization”:
given a representation of G, tell which what are the irreducibles it contains?

Today, we are mostly interested in the group GLn(C). In a decent sense, we have “de-
termined” the irreducible representations ofGLn(C) over a century ago. In another sense,
it is an area of active research, particularly with respect to “factorization”. What Abbie
discussed ultimately pertains to both primes and factorization.

Abbie focused on the example of
∧2C3. This has an action of GL3(C) by

g · (v ∧ w) = (g · v) ∧ (g · w).

For a sanity check suppose

g =

1 2 3
5 0 7
8 6 1

 , v = (2, 1, 7)t, w = (9, 1, 1)t;

what is g · (v ∧ w)?
To study

∧2C3 or any representation of a “Lie group” such as GL3(C), it is useful to
employ the “most important theorem of mathematics”, which determines the represen-
tations of GL1 = C∗ − {0}, which is called an “algebraic torus”1. This most important
theorem says that the irreducible representations of C∗ are all of the form ρ : C∗ → GL1

where ρ(z) = zm for some integer m. That is, the irreducible representations are all

1a torus in math usually refers to a donut, and the complex plane minus the origin is not a donut, but
that’s the terminology
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one-dimensional, and indexed by an integer.2 The integer m is called the weight of the
representation. Similarly, if G = (C∗)r (Cartesian product) then the (algebraic) irre-
ducible representations all send (z1, . . . , zr) ∈ (C∗)r 7→ zm1

1 · · · zmr
r for some fixed choice of

(m1, . . . ,mr) ∈ Zr.
The standard method to understand a representation W of GLn(C) is to first use the

fact that n × n invertible matrices include the n × n diagonal matrices, which are thus
isomorphic to the algebraic torus T = (C∗)n. Thus we can break W into a direct sum
of T representations (aka “weight spaces”). Finally, one can hope (somehow) to use this
information to “understand” W in complete detail.

For the case of W =
∧2C3, there is a basis given by e1 ∧ e2, e1 ∧ e3, e2 ∧ e3; that is W is

three-dimensional. Notice that these three vectors each span weight space. For example,
if

t =

t1 0 0
0 t2 0
0 0 t3

 , t · e1 ∧ e2 = t1t2e1 ∧ e2.

This means that e1∧e2 spans the weight space with weight (1, 1, 0). Similarly e1∧e3 spans
the weight space with weight (1, 0, 1) and e2∧e3 spans the weight space of weight (0, 1, 1).
Hence,

W ∼= V(1,1,0) ⊕ V(1,0,1) ⊕ V(0,1,1)
as T -representations.

To “really” understand W as a G-representation, we would like to understand how the
rest of G acts. This is where the discussion got fuzzy for me. What I understood is that
since almost every M ∈ GLn has an LU -decomposition M = LU where L is lower trian-
gular and U is upper triangular, it suffices to think about the action of upper triangular
matrices on W (and thus, by reflection, lower triangular matrices) since we can therefore
compose such actions.

At this point, Abbie switched to talking about the Lie algebra gln of n× n matrices (not
necessarily invertible n× n matrices). She defined the action of gln on W by

M · v :=
d

dt
|t=0e

Mt · v,

where
eMt :=

∑
k≥0

Mktk/k!

(this “matrix exponential” is a convergent series). Abbie wanted to work with M ∈
{E12, E23} where Eij is the 3 × 3 matrix with 1 in position (i, j) and 0 elsewhere. She
seemed to be getting at W being a gl3-representation (a Lie algebra representation) and
that E12 and E23 sent weight spaces to weight spaces such that span(e1 ∧ e2) was either
sent to itself or 0.

I guess she is trying to explain how e1 ∧ e2 is a “highest weight”. My understanding
is that if W is any GLn irrep, it will have a specific highest weight, and one can inspect

2There are numerous caveats to this statement. The first is that the irreducible representations of any
abelian group, i.e., a group where the binary operation ? is commutative, i.e, a ? b = b ? a, are all one
dimensional. The second is that nothing we say actually covers all irreducible representations – just the
“algebraic” ones that we care about.
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W under the action of the Lie algebra to determine which highest weights occur, thus
indicating with irreducible representations live in W .

Somehow, the transfer to looking at the Lie algebra gln versus the Lie groupGLn wasn’t
explained enough to me. I know that, roughly, knowing representations of one tells you
about the other.

Alexander Yong
(May 13, 2024)
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