Generalizing the Three Gap Theorem

A. S. Dasher, A. Hermida, and T. A. Wong Surrogate Speaker

Student Number Theory Seminar University of Minnesota, Twin Cities 9 December 2019

The Three Gap Theorem

Steinhaus Conjecture (Three Gap Theorem)

Let $\theta \in \mathbb{R}$ and $N \in \mathbb{N}$. If points are marked on a circle at angular displacements of $\theta, 2\theta, \ldots, N\theta$ from a fixed point, then the circumference is partitioned into arcs of at most three distinct lengths.

Proofs given by:

V. T. Sós (1958),S. Świerczkowski (1958),and T. van Ravenstein (1988),among others.

Another Perspective: The Fractional Part Function

The fractional part function may be thought of as $f(x) = x \mod 1$ by identifying 0 and 1 in its codomain. Then for any $\alpha \in \mathbb{R}$ and $N \in \mathbb{N}$, there are at most three distinct distances between adjacent pairs of points $f(\alpha), f(2\alpha), \ldots, f(N\alpha)$.

Motivation

Weyl's Equidistribution Theorem (1909)

For any irrational $\alpha \in \mathbb{R}$, the sequence $\{i\alpha\}_{i\in\mathbb{N}}$ is equidistributed in the interval [0, 1]. That is, for any subinterval $(a, b) \subset [0, 1]$,

$$\lim_{n\to\infty}\frac{1}{n}\cdot |\{\{\alpha\},\{2\alpha\},\ldots\{n\alpha\}\}\cap (a,b)|=b-a.$$

Illustration

Figure 3: Density of Snow

A. S. Dasher, A. Hermida, and T. A. Wong Surrogate Speaker Generalizing the Three Gap Theorem

3d Distance Theorem

Let $\theta, \alpha_1, \ldots, \alpha_d$ be real numbers with $a_1 = 0$ and let n_1, \ldots, n_d be positive integers. The points $n\theta + a_i \mod 1$, where $0 \le n < n_i$ and $1 \le i \le d$, partition the interval [0, 1] into subintervals of at most 3d different lengths.

Proofs given by:

F. M. Liang (1979), among others.

Guiding Research Question:

What can we say about the gaps produced by other periodic functions? Does an "n gap theorem" hold for arbitrary periodic functions?

Theorem

Let f be a non-negative periodic piecewise linear function with d pieces whose slopes have μ distinct magnitudes and which is injective on its fundamental domain. Then for any $\alpha \in \mathbb{R}$ and $N \in \mathbb{N}$, there are at most $3\mu + d$ distinct gap lengths.

Future Directions:

- Finally get this paper over with.
- Never give another presentation on this project again.

Figure 1: www.math.brown.edu/~renyi/js/three_gap.html

Figure 3: www.flickr.com/photos/loren-mooney/26453591605

Trace Functions on Hecke Algebras

December 9, 2019

▲□▶ ▲圖▶ ▲目▶ ▲目▶ 目 のへで

The Hecke Algebra

Definition

Let (W, S) be a finite Coxeter system, and let q be a parameter. Then a Hecke algebra \mathcal{H} associated to W is the $\mathbb{C}(q)$ -algebra with generators $\{T_s | s \in S\}$ and relations

•
$$T_s^2 = (q-1)T_s + q$$

•
$$T_s T_t T_s \ldots = T_t T_s T_t \ldots (m_{st} \text{ terms})$$

Trace Functions

Definition

 $\tau: \mathcal{H} \to \mathbb{C}$ is a trace function if $\tau([\mathcal{H}, \mathcal{H}]) = 0$.

It's called a Markov trace if it satisfies a further equivariance condition.

3

(日) (四) (日) (日) (日)

Trace Functions

Definition

 $\tau: \mathcal{H} \to \mathbb{C}$ is a trace function if $\tau([\mathcal{H}, \mathcal{H}]) = 0$.

It's called a Markov trace if it satisfies a further equivariance condition.

Jones used a Markov trace in his work on knot invariants, which he won a Field's Medal for!

(日) (四) (日) (日) (日)

Classification/Weights of Markov Traces

• Type B: Geck-Lambropoulou, Orellana

э

< 4³ ► <

Classification/Weights of Markov Traces

- Type B: Geck-Lambropoulou, Orellana
- Type D: Orellana

э

< A > < E

Classification/Weights of Markov Traces

- Type B: Geck-Lambropoulou, Orellana
- Type D: Orellana
- Ariki-Koike algebras: Geck-lancu-Malle

Gomi's Trace

• Type-independent Markov trace using the Molien series and Lusztig's Fourier transform

э

Image: A math a math

Gomi's Trace

- Type-independent Markov trace using the Molien series and Lusztig's Fourier transform
- Webster-Williamson gave a geometric interpretation and a uniform proof

Gomi's Trace

- Type-independent Markov trace using the Molien series and Lusztig's Fourier transform
- Webster-Williamson gave a geometric interpretation and a uniform proof
- However, this is only a single trace function, and not a classification

Thanks for listening!

э

- ∢ ⊒ →

Image: A match a ma

Representation theory of GL(2) over a finite field

December 9, 2019

- The study of automorphic forms involves representation theory of reductive groups over local fields
- The complex representation theory for $GL_2(\mathbb{F}_q)$ is analagous to the more general theory and is a good entry point

How many irreducible representations are there?

- Number of irreducible representations of GL₂(F_q) = number of conjugacy classes of GL₂(F_q)
- Analyzing possible eigenvalues of elements of $GL_2(\mathbb{F}_q)$, one finds $q^2 1$ conjugacy classes.

Start with a character of the torus of diagonal matrices, which are pairs (χ₁, χ₂) of characters of F[×]_q

- Start with a character of the torus of diagonal matrices, which are pairs (χ₁, χ₂) of characters of F[×]_q
- Inflate to a character of the upper triangular matrices

- Start with a character of the torus of diagonal matrices, which are pairs (χ₁, χ₂) of characters of F[×]_q
- Inflate to a character of the upper triangular matrices
- 3 Induce to $GL_2(\mathbb{F}_q)$

- Start with a character of the torus of diagonal matrices, which are pairs (χ₁, χ₂) of characters of F[×]_q
- Inflate to a character of the upper triangular matrices
- 3 Induce to $GL_2(\mathbb{F}_q)$

Theorem

- If $\chi_1 \neq \chi_2$, the resulting representation of $GL_2(\mathbb{F}_q)$ is irreducible.
- If χ₁ = χ₂, the resulting representation is a direct sum of a character and a q-dimensional irreducible representation.

How many irreducibles do we have so far?

Altogether, from this we get

- q − 1 characters
- q 1 irreducible representations of dimension q, called Steinberg representations
- $\frac{1}{2}(q-1)(q-2)$ irreducible representations of dimension q+1, called principal series representations

How many irreducibles do we have so far?

Altogether, from this we get

- q − 1 characters
- q 1 irreducible representations of dimension q, called Steinberg representations
- $\frac{1}{2}(q-1)(q-2)$ irreducible representations of dimension q+1, called principal series representations

How many irreducible representations are left?

How many irreducibles do we have so far?

Altogether, from this we get

- q − 1 characters
- q 1 irreducible representations of dimension q, called Steinberg representations
- $\frac{1}{2}(q-1)(q-2)$ irreducible representations of dimension q+1, called principal series representations

How many irreducible representations are left? $\frac{1}{2}(q^2 - q)$

The remaining irreducible representations

Theorem

Let E be the quadratic field extension of \mathbb{F}_q . The remaining irreducible representations are parameterized by non-decomposable characters of E^{\times} up to conjugation of the character.

The remaining irreducible representations

Theorem

Let E be the quadratic field extension of \mathbb{F}_q . The remaining irreducible representations are parameterized by non-decomposable characters of E^{\times} up to conjugation of the character.

These representations are the cuspidal representations.

The remaining irreducible representations

Theorem

Let E be the quadratic field extension of \mathbb{F}_q . The remaining irreducible representations are parameterized by non-decomposable characters of E^{\times} up to conjugation of the character.

These representations are the cuspidal representations.

As a check: there are $q^2 - q$ non-decomposable characters of the quadratic extension, so $\frac{1}{2}(q^2 - q)$ of these cuspidal representations. That's how many we had left!

Thanks

Thanks for listening! Happy Holidays!

э

References

- Complex representations of *GL*(2, *K*) for finite fields *K*, Ilya Piatetski-Shapiro
- Automorphic Forms and Representations, Daniel Bump
Ice Models and Whittaker Functions A Bridge Between Number Theory and Quantum Groups

December 9, 2019

What's An Ice Model?

- A state of ice is a rectangular grid of tetravalent vertices where each edge is directed
- "Ice" rule = each vertex has 2 edges coming in and 2 edges going out
- Number rows bottom to top starting at 1, columns right to left starting at 0

What's An Ice Model?

- A state of ice is a rectangular grid of tetravalent vertices where each edge is directed
- "Ice" rule = each vertex has 2 edges coming in and 2 edges going out
- Number rows bottom to top starting at 1, columns right to left starting at 0

What's An Ice Model?

- A state of ice is a rectangular grid of tetravalent vertices where each edge is directed
- "Ice" rule = each vertex has 2 edges coming in and 2 edges going out
- Number rows bottom to top starting at 1, columns right to left starting at 0

What's An Ice Model?

- A state of ice is a rectangular grid of tetravalent vertices where each edge is directed
- "Ice" rule = each vertex has 2 edges coming in and 2 edges going out
- Number rows bottom to top starting at 1, columns right to left starting at 0

What do I do with an Ice Model?

Turn it into a function!

Definition

We attach a Boltzmann weight B(v) to each vertex v: e.g.

The weight of a state \mathfrak{s} of ice is $B(\mathfrak{s}) = \prod_{v \in \mathfrak{s}} B(v)$. Given a system of boundary conditions \mathfrak{S} , the partition function is

$$Z(\mathfrak{S}) = \sum_{\mathfrak{s}\in\mathfrak{S}} B(\mathfrak{s}).$$

What do I do with an Ice Model?

Turn it into a function!

Definition

We attach a Boltzmann weight B(v) to each vertex v: e.g.

The weight of a state \mathfrak{s} of ice is $B(\mathfrak{s}) = \prod_{v \in \mathfrak{s}} B(v)$. Given a system of boundary conditions \mathfrak{S} , the partition functions

$$Z(\mathfrak{S}) = \sum_{\mathfrak{s}\in\mathfrak{S}} B(\mathfrak{s}).$$

What do I do with an Ice Model?

Turn it into a function!

Definition

We attach a Boltzmann weight B(v) to each vertex v: e.g.

The weight of a state \mathfrak{s} of ice is $B(\mathfrak{s}) = \prod B(v)$.

Given a system of boundary conditions \mathfrak{S} , the partition function is

$$Z(\mathfrak{S}) = \sum_{\mathfrak{s}\in\mathfrak{S}} B(\mathfrak{s}).$$

What do I do with an Ice Model?

Turn it into a function!

Definition

We attach a Boltzmann weight B(v) to each vertex v: e.g.

The weight of a state \mathfrak{s} of ice is $B(\mathfrak{s}) = \prod_{v \in \mathfrak{s}} B(v)$. Given a system of boundary conditions \mathfrak{S} , the partition function is

$$Z(\mathfrak{S}) = \sum_{\mathfrak{s}\in\mathfrak{S}} B(\mathfrak{s}).$$

Why do number theorists care?

Let $G = GL_r(F)$ for a nonarch. local field F.

We can index special elements in *T* by partitions λ : call each of these t^{λ} .

We can make a function W^{χ} called a Whittaker function on any principal series representation of *G*; it suffices to calculate it on elements t^{λ} .

Turns out, for a set of boundary conditions \mathfrak{S}_{λ} given by λ and a specific set of weights,

$$W^{\chi}(t^{\lambda}) = Z(\mathfrak{S}_{\lambda}).$$

Why do number theorists care?

Let $G = GL_r(F)$ for a nonarch. local field F.

We can index special elements in *T* by partitions λ : call each of these t^{λ} .

We can make a function W^{χ} called a Whittaker function on any principal series representation of *G*; it suffices to calculate it on elements t^{λ} .

Turns out, for a set of boundary conditions \mathfrak{S}_{λ} given by λ and a specific set of weights,

 $W^{\chi}(t^{\lambda}) = Z(\mathfrak{S}_{\lambda}).$

Why do number theorists care?

Let $G = GL_r(F)$ for a nonarch. local field *F*.

We can index special elements in *T* by partitions λ : call each of these t^{λ} .

We can make a function W^{χ} called a Whittaker function on any principal series representation of *G*; it suffices to calculate it on elements t^{λ} .

Turns out, for a set of boundary conditions \mathfrak{S}_{λ} given by λ and a specific set of weights,

 $W^{\chi}(t^{\lambda}) = Z(\mathfrak{S}_{\lambda}).$

Why do number theorists care?

Let $G = GL_r(F)$ for a nonarch. local field *F*.

We can index special elements in *T* by partitions λ : call each of these t^{λ} .

We can make a function W^{χ} called a Whittaker function on any principal series representation of *G*; it suffices to calculate it on elements t^{λ} .

Turns out, for a set of boundary conditions \mathfrak{S}_{λ} given by λ and a specific set of weights,

$$W^{\chi}(t^{\lambda}) = Z(\mathfrak{S}_{\lambda}).$$

Even Better/Future Questions

Even better, this also works for metaplectic extensions of $GL_r(F)$! (using that set of weights earlier, actually...)

Question: does this work for groups of other types?

Even Better/Future Questions

Even better, this also works for metaplectic extensions of $GL_r(F)$! (using that set of weights earlier, actually...)

Question: does this work for groups of other types?

Special Values through ages

December 1, 2019

17th Century

Theorem

$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \dots = \frac{\pi}{4}$$

Proof mechanism: relating rational functions to trig functions

$$\arctan(1) = \int_0^1 \frac{1}{1+x^2} dx = \int_0^1 1 - x^2 + x^4 - \cdots$$

Calculus was new!

Bernoulli Challenge

Calculate

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \sum_{n \ge 1} \frac{1}{n^2}$$

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへで

Evaded all mathematicians of the time... New methods were needed.

18th Century

Theorem

$$1 + \frac{1}{2^2} + \frac{1}{3^2} + \dots = \sum_{n \ge 1} \frac{1}{n^2} = \frac{\pi^2}{6}$$

Proof mechanism: infinite products and analytic (as opposed to geometric) foundations of trig functions.

$$\sum_{n\geq 0} (-1)^n \frac{x^{2n+1}}{(2n+1)!} = \sin x = x \prod \left(1 - \frac{x^2}{n^2 \pi^2}\right)_{n\geq 1}$$

Expand the infinte product and compare the x^3 terms on both sides.

Challenges

$$\sum_{n\geq 1}\frac{1}{n^3} = ??$$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ ―臣 … のへで

No answer yet!

But new discoveries have been made.

19th Century

Some values of L(s, χ) using complex contour integration for Dirichlet L-functions

- Eisenstein series and their *rationality* of their Fourier coefficients.
- Fourier series was beginning to be understood!

20th Century

Special values of ζ_k(s) for number fields k/Q using rationality of Fourier coefficients of Hilbert-Blumenthal Eisenstein series on GL₂.

Special values of *L*-functions attached to holomorphic modular forms using Eisenstein series on LARGER groups. Sp_{4×4} is used for GL₂ forms for example.

 Deligne conjectures on why ζ(3) etc. values could NOT be determined.

21st Century

.... Well 80+ years left...

Representations of Renner Monoids

December 9, 2019

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The Renner Monoid

• The "Weyl group" of the monoid world

3. 3

・ロト ・日下 ・ヨト

- The "Weyl group" of the monoid world
- \bullet Generated by: "Weyl group \bigcup Idempotents"

3

Image: A match a ma

- The "Weyl group" of the monoid world
- \bullet Generated by: "Weyl group \bigcup Idempotents"
- Bruhat-Renner decomp: $M = \sqcup_{r \in R} BrB$

3

Example: The Rook Monoid

Definition

The type A Renner monoid, or rook monoid, is the monoid R of 0-1 matrices with an most one entry in each row/column

.

Example: The Rook Monoid

Definition

The type A Renner monoid, or rook monoid, is the monoid R of 0-1 matrices with an most one entry in each row/column

Has a nested lattice of diagonal idempotents e:

Character table of R contains character tables of certain double coset subalgebras eRe. These character tables can be used to compute the whole character table:

• Munn (Type A)

Character table of R contains character tables of certain double coset subalgebras eRe. These character tables can be used to compute the whole character table:

- Munn (Type A)
- Li-Li-Cao (All types)

Character table of R contains character tables of certain double coset subalgebras eRe. These character tables can be used to compute the whole character table:

- Munn (Type A)
- Li-Li-Cao (All types)
- H-Marx-Kuo-McDonald-O'Brien-Vetter (Hecke algebras)

Further Directions

• Can this say anything about the underlying reductive monoid?

Further Directions

- Can this say anything about the underlying reductive monoid?
- Is there anything we can glean from the nice geometric structure of monoids?

- Can this say anything about the underlying reductive monoid?
- Is there anything we can glean from the nice geometric structure of monoids?
- Combinatorial interpretations?

Thanks for listening!

э

< □ > < 同 > < 回 > < 回 > < 回 >