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The Three Gap Theorem

Circle Interpretation

Figure 1: α ≈ 0.31, N = 40

Steinhaus Conjecture
(Three Gap Theorem)

Let θ ∈ R and N ∈ N. If points
are marked on a circle at angular
displacements of θ, 2θ, . . . ,Nθ
from a fixed point, then the
circumference is partitioned into
arcs of at most three distinct
lengths.

Proofs given by:

V. T. Sós (1958),
S. Świerczkowski (1958),
and T. van Ravenstein (1988),
among others.
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The Three Gap Theorem

Another Perspective: The Fractional Part Function

The fractional part function may be thought of as f (x) = x mod 1
by identifying 0 and 1 in its codomain. Then for any α ∈ R and
N ∈ N, there are at most three distinct distances between adjacent
pairs of points f (α), f (2α), . . . , f (Nα).

Sawtooth Function Interpretation

Figure 2: α = 0.31, N = 8
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Motivation

Weyl’s Equidistribution Theorem (1909)

For any irrational α ∈ R, the sequence {iα}i∈N is equidistributed
in the interval [0, 1]. That is, for any subinterval (a, b) ⊂ [0, 1],

lim
n→∞

1
n · |{{α}, {2α}, . . . {nα}} ∩ (a, b)| = b − a.

Illustration

Figure 3: Density of Snow
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Existing Generalizations

3d Distance Theorem

Let θ, α1, . . . , αd be real numbers with a1 = 0 and let n1, . . . , nd
be positive integers. The points nθ + ai mod 1, where 0 ≤ n < ni
and 1 ≤ i ≤ d , partition the interval [0, 1] into subintervals of at
most 3d different lengths.

Proofs given by:

F. M. Liang (1979), among others.
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New Direction of Generalization

Guiding Research Question:

What can we say about the gaps produced by other periodic
functions? Does an “n gap theorem” hold for arbitrary periodic
functions?
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A Particular Result:

Theorem

Let f be a non-negative periodic piecewise linear function with d
pieces whose slopes have µ distinct magnitudes and which is
injective on its fundamental domain. Then for any α ∈ R and
N ∈ N, there are at most 3µ+ d distinct gap lengths.

Example
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Future of the Project:

Future Directions:

Finally get this paper over with.

Never give another presentation on this project again.
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Credits

Figure 1:
www.math.brown.edu/~renyi/js/three_gap.html

Figure 3:
www.flickr.com/photos/loren-mooney/26453591605

A. S. Dasher, A. Hermida, and T. A. Wong Surrogate Speaker Generalizing the Three Gap Theorem

www.math.brown.edu/~renyi/js/three_gap.html
www.flickr.com/photos/loren-mooney/26453591605


Trace Functions on Hecke Algebras

December 9, 2019



The Hecke Algebra

Definition

Let (W ,S) be a finite Coxeter system, and let q be a parameter. Then a
Hecke algebra H associated to W is the C(q)-algebra with generators
{Ts |s ∈ S} and relations

T 2
s = (q − 1)Ts + q

TsTtTs . . . = TtTsTt . . . (mst terms)
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Trace Functions

Definition

τ : H → C is a trace function if τ([H,H]) = 0.

It’s called a Markov trace if it satisfies a further equivariance condition.

Jones used a Markov trace in his work on knot invariants, which he won a
Field’s Medal for!
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Classification/Weights of Markov Traces

Type B: Geck-Lambropoulou, Orellana

Type D: Orellana

Ariki-Koike algebras: Geck-Iancu-Malle
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Gomi’s Trace

Type-independent Markov trace using the Molien series and Lusztig’s
Fourier transform

Webster-Williamson gave a geometric interpretation and a uniform
proof

However, this is only a single trace function, and not a classification
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Thanks

Thanks for listening!
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Why study this?

The study of automorphic forms involves representation theory of
reductive groups over local fields

The complex representation theory for GL2(Fq) is analagous to the
more general theory and is a good entry point
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How many irreducible representations are there?

Number of irreducible representations of GL2(Fq) = number of
conjugacy classes of GL2(Fq)

Analyzing possible eigenvalues of elements of GL2(Fq), one finds
q2 − 1 conjugacy classes.
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One construction of irreducibles: parabolic induction

1 Start with a character of the torus of diagonal matrices, which are
pairs (χ1, χ2) of characters of F×

q

2 Inflate to a character of the upper triangular matrices

3 Induce to GL2(Fq)

Theorem

If χ1 6= χ2, the resulting representation of GL2(Fq) is irreducible.

If χ1 = χ2, the resulting representation is a direct sum of a character
and a q-dimensional irreducible representation.
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How many irreducibles do we have so far?

Altogether, from this we get

q − 1 characters

q − 1 irreducible representations of dimension q, called Steinberg
representations
1
2 (q − 1)(q − 2) irreducible representations of dimension q + 1, called
principal series representations

How many irreducible representations are left? 1
2 (q2 − q)
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The remaining irreducible representations

Theorem

Let E be the quadratic field extension of Fq. The remaining irreducible
representations are parameterized by non-decomposable characters of E×

up to conjugation of the character.

These representations are the cuspidal representations.

As a check: there are q2 − q non-decomposable characters of the
quadratic extension, so 1

2 (q2 − q) of these cuspidal representations. That’s
how many we had left!
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Thanks

 

Thanks for listening! Happy
Holidays!
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Ice Models and Whittaker Functions
A Bridge Between Number Theory and Quantum Groups
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Ice Models and
Whittaker
Functions What’s An Ice Model?

Basics
A state of ice is a rectangular grid of tetravalent vertices
where each edge is directed

“Ice" rule = each vertex has 2 edges coming in and 2 edges
going out

Number rows bottom to top starting at 1, columns right to
left starting at 0

row: 3

2

1

012345column:
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Ice Models and
Whittaker
Functions What do I do with an Ice Model?

Turn it into a function!

Definition
We attach a Boltzmann weight B(v) to each vertex v: e.g.

a1 a2 b1 b2 c1 c2

z−nQδ(a)
i 1 gQ(a)z

−nQδ(a)
i 1 (1 − v)z−nQ

i 1

The weight of a state s of ice is B(s) =
∏
v∈s

B(v).

Given a system of boundary conditions S, the partition function
is

Z(S) =
∑
s∈S

B(s).
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Ice Models and
Whittaker
Functions Why do number theorists care?

Let G = GLr(F) for a nonarch. local field F.

We can index special elements in T by partitions λ: call each of
these tλ.

We can make a function Wχ called a Whittaker function on any
principal series representation of G; it suffices to calculate it on
elements tλ.

Turns out, for a set of boundary conditions Sλ given by λ and a
specific set of weights,

Wχ(tλ) = Z(Sλ).
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Ice Models and
Whittaker
Functions Even Better/Future Questions

Even better, this also works for metaplectic extensions of
GLr(F)! (using that set of weights earlier, actually...)

Question: does this work for groups of other types?
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Special Values through ages
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17th Century

Theorem

1− 1
3
+

1
5
− 1

7
+ · · · = π

4

Proof mechanism: relating rational functions to trig functions

arctan(1) =
∫ 1

0

1
1+ x2 dx =

∫ 1

0
1− x2 + x4 − · · ·

Calculus was new!



Bernoulli Challenge

Calculate
1+

1
22 +

1
32 + · · · =

∑
n≥1

1
n2

Evaded all mathematicians of the time...
New methods were needed.



18th Century

Theorem

1+
1
22 +

1
32 + · · · =

∑
n≥1

1
n2 =

π2

6

Proof mechanism: infinite products and analytic (as opposed to
geometric) foundations of trig functions.

∑
n≥0

(−1)n
x2n+1

(2n + 1)!
= sin x = x

∏(
1− x2

n2π2

)
n≥1

Expand the infinte product and compare the x3 terms on both sides.



Challenges

∑
n≥1

1
n3 =??

No answer yet!

But new discoveries have been made.



19th Century

I Some values of L(s, χ) using complex contour integration for
Dirichlet L-functions

I Eisenstein series and their rationality of their Fourier
coefficients.

Fourier series was beginning to be understood!



20th Century

I Special values of ζk(s) for number fields k/Q using rationality
of Fourier coefficients of Hilbert-Blumenthal Eisenstein series
on GL2.

I Special values of L-functions attached to holomorphic modular
forms using Eisenstein series on LARGER groups. Sp4×4 is
used for GL2 forms for example.

I Deligne conjectures on why ζ(3) etc. values could NOT be
determined.



21st Century

.... Well .... 80+ years left...
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The Renner Monoid

The “Weyl group” of the monoid world

Generated by: “Weyl group
⋃

Idempotents”

Bruhat-Renner decomp: M = tr∈RBrB
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Example: The Rook Monoid

Definition

The type A Renner monoid, or rook monoid, is the monoid R of 0-1
matrices with an most one entry in each row/column

Has a nested lattice of diagonal idempotents e:
0

0
0

. . .
0

 ,


1

0
0

. . .
0

 , . . . ,


1

1
1

. . .
1


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Character Tables

Character table of R contains character tables of certain double coset
subalgebras eRe. These character tables can be used to compute the
whole character table:

Munn (Type A)

Li-Li-Cao (All types)

H-Marx-Kuo-McDonald-O’Brien-Vetter (Hecke algebras)
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Further Directions

Can this say anything about the underlying reductive monoid?

Is there anything we can glean from the nice geometric structure of
monoids?

Combinatorial interpretations?
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Thanks

Thanks for listening!
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