0.0.1 Dirichlet L-functions

e Dirichlet (1837) proved there are infinite number of primes in an arithmetic sequence b, b +
m,b+ 2m, ... by using Dirichlet L-series > X where
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e Definition Dirichlet character mod m x : Z — C has conditions:

x(n+m)=x(n) YneZ

x(km) = x(K)x(m) Vk,m € Z

x(n) # 0 < ged(n,m) =1

principal: xo(n) =1 < ged(n,m) =1
trivial, ie mod 1 x(n) =1Vn € Z

ANl

also x : (Z/mZ)* — C* extended to Z/mZ by x(n) = 0 for ged(m,n) > 1

e Has an Euler product

Xg) =110 - xp~)~"
n=1 P

o0

e Tried to follow Legendre, but failed until he started using analytic techniques:

— Dirichlet made use of

and s — 17 in form of a well known identity

! 1 L(1+p)
k—1 _ P
/0 x logp <:U) dr = W

where k£ > 0 is constant, p > 0 has p — 0.
— Used complex analysis and the Euler product
— but did not need analytic continuation.

— Seems to use y — roots of unity but also needs x(n) = 0 when p | n to eliminate a lot
of terms of > x(n)/n® to show that
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where ¢ =np+m

e Eisenstein proved analytic continuation and functional equation for a Dirichlet series related
to (.



e Ernst Kummer (1839,40) introduced ¢ of a cyclotomic field to investigate class number of
these fields following Dirichlet

e Riemann (1859) used Poisson summation

Y )= f(n)
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to show analytic continuation and functional equation of ¢ which is the Dirichlet series with
trivial character:

§(s) = 7 P0(S)C(s) = €1 — )

e — Dedekind (1893) extended ¢ to arbitrary number fields of an algebraic extension K/Q
using trivial y. Dedekind

Gils) = 3 g7 = [10 - V)™
a p

a non-zero ideal in ring of integers Ok of K and p is prime ideal, N is index [Ok : a] =
Ok /al.

— Proven by Hecke (1917) to have meromorphic continuation and functional equation.

e Examples -The twisted mean square and critical zeros of Dirichlet L-functions
-An explicit lower bound for special values of Dirichlet L-functions
-Several expressions of Dirichlet L-functions at Positive integers
-On asymptotoic properties of the generalized Dirichlet L-functions
-Simultaneous nonvanishing of Dirichlet L-functions and twists of Hecke-Maass L-functions
in the critical strip -Explicit bounds on exceptional zeroes of Dirichlet L-functions

-investigation of Dirichlet L-functions of Diaphontine numbers?! (very irrational?!)
0.0.2 Hecke L-functions

e A generalization of the Dirichlet L-function and in particular a generalization of Dedekind ¢

K number field,

v non-archimedean place

Ok ring of integers of K,

p C Ok prime ideal

Np number of elements in finite field Ok /p
|z|y = |z|p = (Np)~ 7% @) for z € K

For real embedding o : K — R for archimedean v |z|, = |o(x)|.



e Leads to Hecke character (Gréssencharacter) x, : K* — C*:
x(@) =[] xo(@)
v

with conditions:
1. x € K C K implies
x(z) =1 product formula

2. all but finite number of x, be unramified, ie, trivial on {z € K} | |z|, = 1}
3. For unramified place v corresponding to p, x(p) = xv(wy) for uniformizer w € K

4. Ordinary ideal a C Ok only included in ) if product of unramified primes

e Hecke L-function (1916)

Li(s,x) =Y (3(\;2)) = ];[ (1= x(p)(p)~*) "

where a, ideals of Ok are products of prime ideals corresponding to places where Yy, is
unramified.

e X trivial, ie., x, = 1,Vv L(s, x) is Dedekind ¢ of K: > (Na)™*. Furthermore, K = QQ becomes
Riemann (.

e If x is finite order Lg(s, x) becomes Dirichlet L-function.

e Hecke: express L-function in terms of generalized #-function, which led to deriving analytic
cont., functional equation, boundedness in vertical strips

0.1 Modular forms

e Hecke (1936) expanded L-functions into area of Modular forms: theta series:
or) = 5 3"
2
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holomophic in $), has
T

=

T 7

o( 20(1),  0(r+2) =0(r)

Is a modular form of weight & = 1/2 period A\ = 2, C condition for group generated by

T—T7+2and 7~ —%, ie has Taylor expansion

o o
TINT
f(r) = Zane X
n=0

which implies holomorphic at co. (ag = 0 = cuspform.)



e Hecke: sequence ag,ay,... C C a, = O(n?), for some d > 0. Given A > 0,k > 0,C = +1,
define:
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led to
e Theorem (Hecke’s Converse Thm 1936) Following are equivalent:

L ®(s) + 2 + g—fg is an entire function bounded in vertical strips and satisfies functional
equation ®(s) = CP(k — s)

2. fis a weight k£ modular form M fm(k, A, C), period A, multiplier condition C'

e Connects modular forms and L-series/functions, (leads to Wiles discoveries including Fermat’s
thm)

e Maass forms (1949): non-holomorphic modular forms that are eigenfunctions of Laplacian.

0.2 Automorphic forms, Eisenstein Series

Es(2) = Z Im(vz)®

yE(PAT)\T
SL2(Z)\SL2(R)/SO(2) = T'\H, P parabolic, eg., upper triangular. Continues ¢
/2,8
€(s) =7 PTCN(s), €(s) = €0~ 9)
e Selberg (1962) mero ctn for Es : s(1 — s)£(2s) - Es has analytic ctn to entire fen of s. Fenl
eqn:
E(28)Es =&(2—2s)E1—s
Characteristics:

1. simple pole at s = 1 with residue 3/7.
2. in0 < Re(s) < 1/2 poles at p/2 where p is non-trivial zero of {(s).
e Lots of ways to use Eisenstein series to generate integral representations of L-functions with

Euler products, use analytic characteristics of Eisenstein series (analytic continuation, func-
tional equation)



e Colin de Verdiere (1982,3) Meromorphic continuation of Eisenstein involves distribution the-
ory including Sobolev spaces, Friedrichs self-adjoint extension of a restriction of a symmetric
unbounded operator, eg., the Laplacian

0?2 0?2
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e cuspforms are smooth, rapid decay, Eisenstein series is smooth moderate growth.

— Constant term of Eisenstein series
1
crE) = [ Eiett)
0

5(25 — 1) 1-s
£(2s)

— Rankin-Selberg method f, g cuspforms w/ F-series

f(Z) — Zane%rinz

n>0

opE(x+iy) =y +

then

—— ondzdy _ _ anb
s 2k _ (s+2k—1) . nvn
[,y = D(s+2k— 1) 3 S

n>1
— pullbacks of Eisenstein series, eg., Rankin triple product:
SL2 X SL2 X SL2 — Sp6><6

holomorphic cuspforms of weight 2k for SLa(Z): f, v, 0

///(E'L)(thz,Zs)f(21)80(22)w(33)(1/11/21/3)%_2 dx1dy;dradysdrzdys

=TI"s x ('s( constant withm) X Ly, (s + 4k — 1)

has Euler product

e [wasawa-Tate wraps everything up in the adele’s. Garrett MFM notes looks at (, Dirichlet
L-function in terms of adeles/ideles, eg., x is a characger on J/k*

0.3 Some informal references

o (Garrett):

— http://www.math.umn.edu/~garrett/m/v/basic_rankin_selberg.pdf

— (Garrett) Colin de Verdiere meromorphic continuation of Eisenstein series:
http://www.math.umn.edu/~garrett/m/v/cdv_eis.pdf

— http://www-users.math.umn.edu/~garrett/m/v/pseudo-cuspforms.pdf
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http://www.math.umn.edu/~garrett/m/v/cdv_eis.pdf
http://www-users.math.umn.edu/~garrett/m/v/pseudo-cuspforms.pdf

— http://www-users.math.umn.edu/~garrett/m/mfms/notes_c/Iwasawa-Tate.pdf
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