0.0.1 Dirichlet L-functions

• Dirichlet (1837) proved there are infinite number of primes in an arithmetic sequence $b, b + m, b + 2m, \ldots$ by using Dirichlet L-series $\sum_{n>0} \frac{\chi(n)}{n^s}$, where

$$L(s,\chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$

• **Definition** Dirichlet character mod $m \chi : \mathbb{Z} \to \mathbb{C}$ has conditions:

- 1. $\chi(n+m) = \chi(n) \quad \forall n \in \mathbb{Z}$
- 2. $\chi(km) = \chi(k)\chi(m) \quad \forall k, m \in \mathbb{Z}$
- 3. $\chi(n) \neq 0 \Leftrightarrow \gcd(n, m) = 1$
- 4. principal: $\chi_0(n) = 1 \Leftrightarrow \gcd(n, m) = 1$
- 5. trivial, ie mod 1 $\chi(n) = 1 \ \forall n \in \mathbb{Z}$

also $\chi: (\mathbb{Z}/m\mathbb{Z})^* \to \mathbb{C}^*$ extended to $\mathbb{Z}/m\mathbb{Z}$ by $\chi(n) = 0$ for $\gcd(m, n) > 1$

• Has an Euler product

$$\sum_{n=1}^{\infty} \frac{\chi(n)}{n^s} = \prod_{p} (1 - \chi(p)p^{-s})^{-1}$$

- Tried to follow Legendre, but failed until he started using analytic techniques:
 - Dirichlet made use of

$$\Gamma(z) = \int_0^\infty x^{z-1} e^{-x} dx$$

and $s \to 1^+$ in form of a well known identity

$$\int_0^1 x^{k-1} \log^{\rho} \left(\frac{1}{x}\right) dx = \frac{\Gamma(1+\rho)}{k^{1+\rho}}$$

where k > 0 is constant, $\rho > 0$ has $\rho \to 0$.

- Used complex analysis and the Euler product
- but did not need analytic continuation.
- Seems to use $\chi \to \text{roots}$ of unity but also needs $\chi(n) = 0$ when $p \mid n$ to eliminate a lot of terms of $\sum \chi(n)/n^s$ to show that

$$\sum \frac{1}{a^{1+\rho}} \to \infty \text{ as } \rho \to 0$$

where q = np + m

• Eisenstein proved analytic continuation and functional equation for a Dirichlet series related to ζ .

1

- Ernst Kummer (1839,40) introduced ζ of a cyclotomic field to investigate class number of these fields following Dirichlet
- Riemann (1859) used Poisson summation

$$\sum_{n \in \mathbb{Z}} f(n) = \sum_{n \in \mathbb{Z}} \hat{f}(n)$$
$$\hat{f}(\xi) = \int_{\mathbb{R}} f(x)e^{-2\pi i x \xi} dx$$

to show analytic continuation and functional equation of ζ which is the Dirichlet series with trivial character:

$$\xi(s) = \pi^{-s/2} \Gamma(\frac{s}{2}) \zeta(s) = \xi(1-s)$$

• — Dedekind (1893) extended ζ to arbitrary number fields of an algebraic extension K/\mathbb{Q} using trivial χ . Dedekind

$$\zeta_K(s) = \sum_{\mathfrak{a}} \frac{1}{N(\mathfrak{a})^s} = \prod_{\mathfrak{p}} (1 - N(\mathfrak{p}))^{-1}$$

 \mathfrak{a} non-zero ideal in ring of integers \mathcal{O}_K of K and \mathfrak{p} is prime ideal, N is index $[\mathcal{O}_K : \mathfrak{a}] = |\mathcal{O}_K/\mathfrak{a}|$.

- Proven by Hecke (1917) to have meromorphic continuation and functional equation.
- Examples -The twisted mean square and critical zeros of Dirichlet L-functions
 - -An explicit lower bound for special values of Dirichlet L-functions
 - -Several expressions of Dirichlet L-functions at Positive integers
 - -On asymptotoic properties of the generalized Dirichlet L-functions
 - -Simultaneous nonvanishing of Dirichlet L-functions and twists of Hecke-Maass L-functions in the critical strip -Explicit bounds on exceptional zeroes of Dirichlet L-functions
 - -investigation of Dirichlet L-functions of Diaphontine numbers?! (very irrational?!)

0.0.2 Hecke L-functions

• A generalization of the Dirichlet L-function and in particular a generalization of Dedekind ζ

K number field,

v non-archimedean place

 \mathcal{O}_K ring of integers of K,

 $\mathfrak{p} \subset \mathcal{O}_K$ prime ideal

 $N\mathfrak{p}$ number of elements in finite field $\mathcal{O}_K/\mathfrak{p}$

$$|x|_v = |x|_{\mathfrak{p}} = (N\mathfrak{p})^{-ord_{\mathfrak{p}}(x)}$$
 for $x \in K$

For real embedding $\sigma: K \to \mathbb{R}$ for archimedean $v |x|_v = |\sigma(x)|$.

• Leads to Hecke character (Grössencharacter) $\chi_v: K^* \to \mathbb{C}^*$:

$$\chi(x) = \prod_{v} \chi_v(x)$$

with conditions:

1. $x \in K \subset K_v^*$ implies

$$\chi(x) = 1$$
 product formula

- 2. all but finite number of χ_v be unramified, ie, trivial on $\{x \in K_v^* \mid |x|_v = 1\}$
- 3. For unramified place v corresponding to \mathfrak{p} , $\chi(\mathfrak{p}) = \chi_v(\varpi_v)$ for uniformizer $\varpi \in K$
- 4. Ordinary ideal $\mathfrak{a} \subset \mathcal{O}_K$ only included in \sum if product of unramified primes
- Hecke L-function (1916)

$$L_K(s,\chi) = \sum_{\mathfrak{a}} \frac{\chi(\mathfrak{a})}{(N\mathfrak{a})^s} = \prod_{\mathfrak{p}} \left(1 - \chi(\mathfrak{p})(N\mathfrak{p})^{-s}\right)^{-s}$$

where \mathfrak{a} , ideals of \mathcal{O}_K are products of prime ideals corresponding to places where χ_v is unramified.

- χ trivial, ie., $\chi_v = 1, \forall v \ L(s, \chi)$ is $Dedekind \ \zeta$ of $K: \sum (N\mathfrak{a})^{-s}$. Furthermore, $K = \mathbb{Q}$ becomes Riemann ζ .
- If χ is finite order $L_K(s,\chi)$ becomes Dirichlet L-function.
- Hecke: express L-function in terms of generalized θ -function, which led to deriving analytic cont., functional equation, boundedness in vertical strips

0.1 Modular forms

• Hecke (1936) expanded L-functions into area of Modular forms: theta series:

$$\theta(\tau) = \frac{1}{2} \sum_{n \in \mathbb{Z}} e^{\pi i n^2 \tau}$$

holomophic in \mathfrak{H} , has

$$\theta(\frac{-1}{\tau}) = C(\frac{\tau}{i})^{1/2}\theta(\tau), \quad \theta(\tau+2) = \theta(\tau)$$

Is a modular form of weight k=1/2 period $\lambda=2, C$ condition for group generated by $\tau \mapsto \tau+2$ and $\tau \mapsto -\frac{1}{\tau}$, ie has Taylor expansion

$$f(\tau) = \sum_{n=0}^{\infty} a_n e^{\frac{2\pi i n \tau}{\lambda}}$$

which implies holomorphic at ∞ . ($a_0 = 0 \Rightarrow \text{cuspform.}$)

• Hecke: sequence $a_0, a_1, \ldots \subset \mathbb{C}$ $a_n = O(n^d)$, for some d > 0. Given $\lambda > 0, k > 0, C = \pm 1$, define:

$$\phi(s) = \sum_{n=1}^{\infty} \frac{a_n}{n^s}$$

$$\Phi(s) = \left(\frac{2\pi}{\lambda}\right)^{-s} \Gamma(s)\phi(s)$$

$$f(\tau) = \sum_{n=0}^{\infty} a_n e^{\frac{2\pi i n \tau}{\lambda}}$$

led to

- Theorem (Hecke's Converse Thm 1936) Following are equivalent:
 - 1. $\Phi(s) + \frac{a_0}{s} + \frac{Ca_0}{k-s}$ is an entire function bounded in vertical strips and satisfies functional equation $\Phi(s) = C\Phi(k-s)$
 - 2. f is a weight k modular form $Mfm(k,\lambda,C)$, period λ , multiplier condition C
- Connects modular forms and L-series/functions, (leads to Wiles discoveries including Fermat's thm)
- Mass forms (1949): non-holomorphic modular forms that are eigenfunctions of Laplacian.

0.2 Automorphic forms, Eisenstein Series

•

$$E_s(z) = \sum_{\gamma \in (P \cap \Gamma) \setminus \Gamma} \operatorname{Im}(\gamma z)^s$$

 $SL_2(\mathbb{Z})\backslash SL_2(\mathbb{R})/SO(2) = \Gamma\backslash\mathfrak{H}$, P parabolic, eg., upper triangular. Continues ζ

$$\xi(s) = \pi^{-s/2} \Gamma(\frac{s}{2}) \zeta(s), \quad \xi(s) = \xi(1-s)$$

• Selberg (1962) mero ctn for $E_s: s(1-s)\xi(2s)\cdot E_s$ has analytic ctn to entire fcn of s. Fcnl eqn:

$$\xi(2s)E_s = \xi(2-2s)E_{1-s}$$

Characteristics:

- 1. simple pole at s=1 with residue $3/\pi$.
- 2. in 0 < Re(s) < 1/2 poles at $\rho/2$ where ρ is non-trivial zero of $\zeta(s)$.
- Lots of ways to use Eisenstein series to generate integral representations of L-functions with Euler products, use analytic characteristics of Eisenstein series (analytic continuation, functional equation)

• Colin de Verdière (1982,3) Meromorphic continuation of Eisenstein involves distribution theory including Sobolev spaces, Friedrichs self-adjoint extension of a restriction of a symmetric unbounded operator, eg., the Laplacian

$$\Delta = y^2 \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \right)$$

- cuspforms are smooth, rapid decay, Eisenstein series is smooth moderate growth.
 - Constant term of Eisenstein series

$$c_P E_s(z) = \int_0^1 E_s(z+t) dt$$

$$c_p E(x+iy) = y^s + \frac{\xi(2s-1)}{\xi(2s)} y^{1-s}$$

- Rankin-Selberg method f, g cuspforms w/ F-series

$$f(z) = \sum_{n>0} a_n e^{2\pi i n z}$$

then

$$\int_{P \setminus \mathfrak{H}} y^s f(z) \overline{g(z)} y^{2k} \frac{dx dy}{y^2} = (4\pi)^{-(s+2k-1)} \Gamma(s+2k-1) \sum_{n \geq 1} \frac{a_n \overline{b_n}}{n^{s+2k-1}}$$

- pullbacks of Eisenstein series, eg., Rankin triple product:

$$SL_2 \times SL_2 \times SL_2 \hookrightarrow Sp_{6 \times 6}$$

holomorphic cuspforms of weight 2k for $SL_2(\mathbb{Z})$: f, φ, ψ

$$\int \int \int (E \cdot \iota)(z_1, z_2, z_3) \overline{f(z_1)\varphi(z_2)\psi(z_3)} (y_1 y_2 y_3)^{2k-2} dx_1 dy_1 dx_2 dy_2 dx_3 dy_3$$
$$= \Gamma' s \times \zeta' s (\text{constant with} \pi) \times L_{f, \varphi, \psi}(s + 4k - 1)$$

has Euler product

• Iwasawa-Tate wraps everything up in the adele's. Garrett MFM notes looks at ζ , Dirichlet L-function in terms of adeles/ideles, eg., χ is a characger on \mathbb{J}/k^{\times}

0.3 Some informal references

- (Garrett):
 - http://www.math.umn.edu/~garrett/m/v/basic_rankin_selberg.pdf
 - (Garrett) Colin de Verdière meromorphic continuation of Eisenstein series: http://www.math.umn.edu/~garrett/m/v/cdv_eis.pdf
 - http://www-users.math.umn.edu/~garrett/m/v/pseudo-cuspforms.pdf

- http://www-users.math.umn.edu/~garrett/m/mfms/notes_c/Iwasawa-Tate.pdf
- Gelbart, Stephen S.; Miller, Stephen D. Riemann's zeta function and beyond. (English summary) Bull. Amer. Math. Soc. (N.S.) 41 (2004), no. 1, 59112.
- Dirichlet, Peter Gustav Lejeune
 There are infinitely many prime numbers in all arithmetic progressions with first term and difference coprime
 arXiv:0808.1408v2 [math.HO]
- Ireland, Kenneth F; Rosen, Michael I A Classical Introduction to Modern Number Theory Graduate texts in mathematics; 84. 2nd ed.. New York: Springer-Verlag 1990
- Bruinier, Jan H (Jan Hendrik), The 1-2-3 of Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway Universitext; SpringerLink (Online service), Berlin: Springer 2008