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Motivation

In Analytic Number Theory we are interested in understanding the analytic proper-
ties of zeta and L-functions, i.e, the Riemann Hypothesis. For example, if

π(x) :=
∑
p prime
p≤x

1

then the Riemann hypothesis is equivalent to π(x) = Li(x)+O(x
1
2 log x). In general,

it suffices to to have strong bounds of the underlying L-functions on the critical line.
For example: for small ε > 0 and r ≥ 1, and T > 1,∫ T

1

|ζ(
1

2
+ it)|2r dt = TPr(log T ) +O(T

1
2
+ε)

where Pr(log T ) is a polynomial in log T of degree r2 implies the Lindelöf Hypothesis,
and has large applications for the Riemann Hypothesis.

In the 1980’s an idea emerged where it could be useful to consider an averaging
family of L-functions to create a multiple Dirichlet series. L-functions alone behave
chaotically, but if a good averaging family is chosen the associated multiple Dirichlet
series has nice properties and gives information regarding the analytic properties of
the original L-functions in the family. It has yet to be made precise which families
are nice, and this is in part why the study of multiple Dirichlet series is hard.
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Setup

For d ∈ Z non-zero and square-free, let

χd(n) :=


(
d

n

)
d ≡ 1 (mod 4)(

4d

n

)
d ≡ 2, 3 (mod 4)

where

(
a

b

)
is the Kronecker symbol defined by

(
a

b

)
:=

(
a

u

) k∏
i=1

(
a

pi

)ei
where b = u · pe11 · · · p

ek
k is the prime factorization of b, and

(
a

pi

)
is the Legendre

symbol defined by

(
a

pi

)
:=


1 a is a quad. res. modulo pi and a 6≡ 0 (mod pi)

−1 a is a non quad. res. modulo pi

0 a ≡ 0 (mod pi)

.

χd is the quadratic character attached to Q(
√
d). Define the L-function associated

to χd by

L(s, χd) :=
∑
n≥1

χd(n)n−s =
∏

p prime

(1− χd(p)p−s)−1 (for R(s) > 1).

These are the L-functions in the number field setting. We have similar L-functions
in the function field setting. Indeed, if Fq is a finite field of odd characteristic, then

over Fq(x) we have an analogous character χd(m) =

(
d

m

)
for d,m ∈ Fq[x] monic.

The associated L-function is defined by

L(s, χd) :=
∑

m monic

χd(m)|m|−s =
∏

π monic irr.

(1− χd(π)|π|−s)−1 (for R(s) > 1)

where |a| = qdeg a.
In the number field setting, for r ∈ N and D > 0, define the r-th moment by

Mr(D) :=
∑

d sq.-free
|d|≤D

L(1
2
, χd)

r.
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We would like to study the asymptotics of this average. Often it’s convenient to
work with a smoothed version:

Mr(D;F ) :=
∑

d sq.-free
|d|≤D

L(1
2
, χd)

rF ( d
D

).

for suitably nice functions F : (0,∞) → [0, 1]; purely analytic methods produced
asymptotics for the original moment from the smoothed version. In the function
field setting we define the r-th moment as

Mr(D) :=
∑

d monic sq.-free
|d|≤D

L(1
2
, χd)

r.

Conjectures

In 2005, Conrey, Farmer, Keating, Rubinstein, and Snaith put fourth the following
conjecture for the asymptotics of moments in the number field setting (see [1]):

Conjecture (CFKRS). For r ≥ 1, nice functions F and small ε > 0,

Mr(D;F ) = DQF
r (logD) +O(D

1
2
+ε)

where QF
r (t) is a polynomial of degree r(r+1)

2
.

In 2019, it was shown by Diaconu (see [2]) that additional secondary terms emerge
in the asymptotic formula for the CFKRS conjecture. So, coming up with the correct
conjecture for the asymptotic behavior is difficult. The refined conjecture for the
number field case is:

Conjecture. For r ≥ 4, D ≥ 1, nice F , and small ε > 0,

Mr(D;F ) =
∞∑
n=1

D
1
2
+ 1

2nQF
n,r(logD) +O(D

1
2
+ε)

for explicitly computable polynomials QF
n,r(t).

The analogous conjecture for the function field setting is:
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Conjecture. For r ≥ 4, D ∈ N, and small ε > 0,

Mr(D) =
qD

ζ(2)
Q1(D, q) +

∞∑
n=2

qD( 1
2
+ 1

2n
)Qn(D, q) +Oε,q,r(q

D( 1
2
+ε))

for explicitly computable Qn(D, q).

The takeaway from these conjectures is that the right-hand sides no longer contain
quadratic Dirichlet L-functions at the expense of error terms.

The above conjectures are also important for the following reason: often there
is an analogy between arguments in the function field setting and the number field
setting, albeit the function field setting is drastically easier. It has been proved that
if the refined conjecture in the function field setting is assumed then function field
Riemann follows. We hope that the proof of the refined conjecture in the function
field setting will have an analogous proof for number fields, and this will provide some
insight on how to prove number field Riemann. My research concerns computing the
QF
n,r and Qn. The current goal is to compute the Qn because the calculations in the

number field setting are easier to compute from a technical standpoint.

Computing The Qn

So how do we compute the Qn? It suffices to consider a multiple Dirichlet series
which is closely connected to the moments for the function field setting (setting all
si = 1

2
makes this expression look very close to the definition for moments):

Z(s1, . . . , sr+1) =
∑

d sq.-free

L(s1, χd) · · ·L(sr, χd)

|d|sr+1
.

The sum in this multiple Dirichlet series runs over the fundamental discriminants
which makes its analytic behavior difficult to analyze. Instead, we work with a
modified series Z∗(s1, . . . , sr+1) whose definition we will avoid due to the construction
of this modified series being highly nontrivial. Assuming only the meromorphic
continuation of Z∗(s1, . . . , sr+1), it satisfies a group of functional equations

Z∗(wi(s1, . . . , sr+1)) = Z∗(s1, . . . , sr+1) (for 1 ≤ i ≤ r)

Z∗(wr+1(s1, . . . , sr+1)) = Z∗(s1, . . . , sr+1)

where

wi(s1, . . . , sr+1) = (. . . , si−1, 1− si, si+1, . . . , sr+1 + si − 1
2
) (for 1 ≤ i ≤ r)

wr+1(s1, . . . , sr+1) = (s1 + sr+1 − 1
2
, . . . , sr + sr+1 − 1

2
, 1− sr+1)
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Z∗(s1, . . . , sr+1) has a simple pole at (1
2
, . . . , 1

2
, 1). In fact, all the poles of Z∗(s1, . . . , sr+1)

are reflections of this pole by products of the wi. If we can compute all of the poles,
standard methods will produce analytic information about Z∗(s1, . . . , sr+1) and hence
Z(s1, . . . , sr+1) as well. We can use this pole data to compute the Qn explicitly.

Kac-Moody Lie Algebras and Root Systems

One major drawback is that the groupWr generated by w1, . . . , wr+1 is infinite for r ≥
4, so we need some powerful machinery to compute the poles. This machinery is the
theory of Kac-Moody Lie algebras. A Kac-Moody Lie algebra can be characterized
by the following:

• A generalized Cartan matrix C = (cij).

• A set of linear independent vectors αi called roots over a complex vector space.

• A set of linear independent vectors α̌i called coroots in the dual vector space
such that α̌i(αj) = cij.

The roots define a root system: a subset of vectors Φ contained in the Z-span of the
αi which are invariant under a group W of reflections called the Weyl group.

In our setting Wr is isomorphic to the Weyl group of the Kac-Moody Lie algebra
with generalized Cartan matrix

2 −1
2 −1

. . .
...

−1 −1 · · · 2


Because this generalized Cartan matrix is nice, computing the action of the reflections
on the αi is easy. Computing all reflections of the simple pole is equivalent to finding
all real roots of this Kac-Moody Lie algebra; given a real root we can substitute
the original pole in to get the reflected pole. We would like a closed formula to
compute the real roots. Finding such a closed formula is difficult and this is what
I’m currently working to achieve. The difficulty is that the roots associated to this
Weyl group are of two types: real and imaginary (imaginary roots do not appear in
the finite case). The real roots α are such that there exists a w ∈ Wr sending α to
an αi. We are only concerned with the real roots, but distinguishing between a real
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root and an imaginary root by inspection is not an easy task. Indeed, any root α is
of the form

α =
r∑
i=1

kiαi + kr+1αr+1 (ki ∈ Z for 1 ≤ i ≤ r),

and there’s not much here to directly tell us if α is real. Nevertheless, we have an
inductive argument to compute real roots α with fixed kr+1. Computing the real
roots for fixed kr+1 is sufficient, but we would like a closed formula to compute the
real roots.
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