Math 418, Spring 2025 – Practice Problems 3

- 14.2.3 Determine the Galois group of $(x^2 2)(x^2 3)(x^2 5)$. Determine all the subfields of the splitting field of this polynomial.
- 14.2.10 Determine the Galois group of the splitting field over \mathbb{Q} of $x^8 3$.
- 14.2.13 Prove that if the Galois group of the splitting field of a cubic over \mathbb{Q} is the cyclic group of order 3 then all the roots of the cubic are real.
- 14.3.1 Factor $x^8 x$ into irreducibles in $\mathbb{Z}[x]$ and in $\mathbb{F}_2[x]$.
- 14.4.4 Let $f(x) \in F[x]$ be an irreducible polynomial of degree n over the field F, let L be the splitting field of f(x) over F and let α be a root of f(x) in L. If K is any Galois extension of F, show that the polynomial f(x) splits into a product of m irreducible polynomials each of degree d over K, where $d = [K(\alpha) : K] = [(L \cap K)(\alpha) : L \cap K]$ and $m = n/d = [F(\alpha) \cap K : F]$.
- 14.5.2 Determine the subfields of $Q(\zeta_8)$ generated by the periods of ζ_8 and in particular show that not every subfield has such a period as primitive element.
- 14.6.2a Determine the Galois group of $x^3 x^2 4$
- 14.6.3 Prove for any $a, b \in \mathbb{F}_{p^n}$ that if $f(x) = x^3 + ax + b$ is irreducible then $-4a^3 27b^2$ is a square in \mathbb{F}_{p^n}
- 14.7.3 Let F be a field of characteristic $\neq 2$. State and prove a necessary and sufficient condition on $\alpha, \beta \in F$ so that $F(\sqrt{\alpha}) = F(\sqrt{\beta})$. Use this to determine whether $\mathbb{Q}(\sqrt{1-\sqrt{2}}) = \mathbb{Q}(i,\sqrt{2})$
 - A-G Determine the following:
 - (a) The radical of the ideal $(18) \subseteq \mathbb{Z}$
 - (b) The variety $V(I) \subseteq \mathbb{R}^2$ for the ideal $I = (x^2 + y^2 1) \subseteq \mathbb{R}[x, y]$.