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Math 418, Spring 2025 — Practice Problems 3

Determine the Galois group of (z* — 2)(x* — 3)(x? — 5). Determine all the subfields of
the splitting field of this polynomial.

Solution. This is a degree 8 Galois extension with Galois group Cy x Cy x C5. Since
every non-identity element has order 2, we have 7 subgroups of order 2. We also have
7 subgroups of order 4 (the quotients of the 7 previous subgroups).

To find the intermediate fields, compute directly. For instance, the fixed field of v/2 —
—V2,V3 = —/3,V5 = —/5is Q(v/6,1/10), and the fixed field of this element along
with v2 = v/2,v/3 = v/3,V5 = =5 is Q(+/6).

Determine the Galois group of the splitting field over Q of 2® — 3.

Solution. The splitting field of 8 —3 is Q((s, v/3) = Q(4, v/2, ¥/3), which has degree 32
over Q. The automorphisms are the 32 possible choices of i — +i, /2 — £v/2, V/3 —
gg%. The subgroup sending i — 7,v/2 — v/2 is isomorphic to Cs and the subgroup
fixing v/3 is V4. The first subgroup is normal, and so the Galois group is Cs x Vj.

Prove that if the Galois group of the splitting field of a cubic over Q is the cyclic group
of order 3 then all the roots of the cubic are real.

Solution. Real cubics must have at least one real root by the intermediate value
theorem. If the other two roots are nonreal, complex conjugation is an element of
order 2.

Factor 2® — x into irreducibles in Z[x] and in Fy[z].

Solution. Over Z, we have 28 —z = z(2" — 1) = o(x — 1)(2% + 2° + 2 + 23 + 22 +
x + 1), since z" — 1 = [[,, Pa(z). Over Fo, 2% — z is the product of all irreducible
polynomials over Fy of degree 1 and 3. (This is Proposition 14.18 in Dummit & Foote.
Notice that the roots of every such polynomial live in Fy; for some 7 < 3, and those
fields are contained in Fg, which consists of the roots of z® — x). The factorization is
z(x+1)(23 + 2+ 1)(2® + 22 + 1), and we can check that the degree is right.

Let f(x) € F[z]| be an irreducible polynomial of degree n over the field F, let L be the
splitting field of f(x) over F and let « be a root of f(x) in L. If K is any Galois
extension of F, show that the polynomial f(z) splits into a product of m irreducible
polynomials each of degree d over K, where d = [K(a) : K] = (LN K)(«a) : LN K]
and m =n/d = [F(a)NK : F].

Solution. The factorization of f over K is the same as over L N K since every
linear factor of f and hence every product of those factors lies in L[z]. Thus, the two
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definitions of d are the same. Let H be the subgroup of Gal(L/F) corresponding to
the intermediate field LN K. By our construction of minimal polynomials, we have for
any root « of f,
Mo, 10k (T) = H (z = B).
BeEH
Thus, the degrees of the irreducible factors of f(x) over L N K equal the sizes of the
H-orbits of the roots of f.

H is normal in G by the Fundamental Theorem, property 4, since K/F is Galois.
By Dummit & Foote Exercise 4.9a, since G acts transitively on the roots of f and
H is normal, the H-orbits must be the same size; thus all degrees are the same.
This degree must be the degree of the minimal polynomial of a over L N K, which is
(LN K)(a): LNK].

Determine the subfields of Q((s) generated by the periods of (s and in particular show
that not every subfield has such a period as primitive element.

Solution. Let ¢ = (3 G := Gal(Q(¢)/Q) = (Z/8Z)*, which is isomorphic to the
Klein-4 group V,. The elements of G are o, : ( — (¢ for a = 1,3,5,7 The subgroups
and corresponding periods are:

G o C+C+C+(

(03) < (+¢°

(05) < (+¢°

(o7) < ¢+(7
1 > ¢

However, note that ¢ + ¢° = 0, so the fixed field of (o5) is not simply Q(¢ + ¢°).
(Instead, it is Q(7)).

Determine the Galois group of x® — x* — 4

Solution. This factors as (z — 2)(2? + x + 2). The first factor is linear, so can be
ignored. The second factor is an irreducible quadratic, so its Galois group is S = Cs.

Prove for any a,b € Fyn that if f(z) = 2 + ax + b is irreducible then —4a® — 270* is a
square in Fyn

Solution. Note that —4a® — 2702 is the discriminant; it is a square if and only if the
Galois group G of f is a subgroup of As. If f(x) is irreducible, then G is a transitive
subgroup of S35, namely S3 or As. Galois group of finite field extensions are cyclic, so
it must be As.



14.7.3

A-G

Let F be a field of characteristic # 2. State and prove a necessary and sufficient
condition on «,3 € F so that F(y/a) = F(\/B). Use this to determine whether

Solution. If F(y/a) = F(y/B), then 8 € F(a), so is of the form /3 = ¢y + ¢1y/a.
Then 8 = ¢ + 2a + 2coc1y/a. Since , 8 € F, so is y/a unless ¢y or ¢; is 0. The
former means that 8/a = ¢? is a square in F, and the latter means that /3 = ¢y € F.
Therefore, F'(v/a) = F(v/B) iff § is a square in F.

Note that v/2 is in Q(v/1 —v/2) = Q(i,+/2). The latter field is Q(+v/2)(4), and the
former is Q(v/2)(v/1 — v/2), so they are the same field iff (1 —+/2)/(—1) is a square in
@(\/5) Take the norm of v/2 — 1: N(\/§— 1) = 3, which is not a square; thus V2 -1
is not a square in Q(v/2) and the fields are distinct.

Determine the following:

(a) The radical of the ideal (18) C Z

(b) The variety V(I) C R? for the ideal I = (z* + y? — 1) C R[z, y|.
Solution.

(a) Since 18 = 2- 32, (18) = (2) - (3)2 s0 /(18) = (2) - (3) = (6).

(b) V(I) is the set of points (z,y) in R? such that 22 +y? — 1 = 0 i.e. the unit circle.



