Math 418, Spring 2025 – Practice Problems 2

- 13.2.6 Prove directly from the definitions that the field $F(a_1, \ldots, a_n)$ is the composite of the fields $F(a_1), F(a_2), \ldots, F(a_n)$.
- 13.3.1 Prove that it is impossible to construct the regular 9-gon.
- 13.4.4 Determine the splitting field and its degree over \mathbb{Q} for $f(x) = x^6 4$.
- 13.5.2 Find all irreducible polynomials of degrees 1, 2 and 4 over \mathbb{F}_2 and prove that their product is $x^{16} x$.
- 13.5.4 Let a > 1 be an integer. Prove for any positive integers n, d that d divides n if and only if $a^d 1$ divides $a^n 1$. Conclude in particular that $\mathbb{F}_{p^d} \subseteq \mathbb{F}_{p^n}$ if and only if d divides n.
- 13.6.6 Prove that for n odd, n > 1 that $\Phi_{2n}(x) = \Phi_n(-x)$
- 13.6.10 Let ϕ denote the Frobenius map \mathbb{F}_{p^n} . Prove that ϕ gives an automorphism of order n
- 14.1.1 (a) Show that if the field K is generated over F by the elements $a_1, ..., a_n$ then an automorphism a of K fixing F is uniquely determined by $\sigma(a_1), ..., \sigma(a_n)$. In particular, show that an automorphism fixes K if and only if it fixes a set of generators for K.
 - (b) Let $G \leq Gal(K/F)$ be a subgroup of the Galois group of the extension K/F and suppose $\sigma_1, \ldots, \sigma_k$ are generators for G. Show that the subfield E of K containing F is fixed by G if and only if it is fixed by the generators $\sigma_1, \ldots, \sigma_k$.
- 14.1.9 Determine the fixed field of the automorphism $\phi : t \mapsto t + 1$ of k(t)
- 14.1.10 Let K be an extension of the field F. Let $\phi: K \to K'$ be an isomorphism of K with a field K' which maps F to the subfield F' of K'. Prove that the map $\sigma \mapsto \phi \sigma \phi^{-1}$ defines a group isomorphism $Aut(K/F) \to Aut(K'/F)$.