
Math 418, Spring 2025 – Practice Problems 2

13.2.6 Prove directly from the definitions that the field F (a1, . . . , an) is the composite of the
fields F (a1), F (a2), . . . , F (an).

Solution. F (a1, . . . , an) is the smallest field containing F, a1, . . . , an. This must con-
tain F (a1), . . . , F (an), so it contains their composite. Conversely, any field containg
all of F (a1), . . . , F (an) contains F and a1, . . . , an, so it contains F (a1, . . . , an), and the
composite by definition is such a field.

13.3.1 Prove that it is impossible to construct the regular 9-gon.

Solution. Consider the triple angle formula for cosines: cos θ = 4 cos3(θ/3)−3 cos(θ/3).
Substituting θ = 2π

3
, we see that cos 2π

9
is a root of 4x3 − 3x + 1

2
, so 2 cos 2π

9
is a root

of x3 − 3x+ 1. this is irreducible by the rational root theorem, so [Q(cos 2π
9
) : Q] = 3,

which is not a power of 2. Since the interior angle of a regular 9-gon has angle π− 2π
9
,

the regular 9-gon is not constructible. (See Dummit and Foote, pp. 534 for more
details on this argument).

Note: there is another possible argument, which we didn’t have during Section 13.3,
but we do have now. The 9th roots of unity form the points of a regular 9-gon, and
the smallest field containing these roots is Q(ζ9), where ζ9 is a primitive 9th root of
unity. The minimal polynomial for ζ9 is Φ9(x), which has degree ϕ(9) = 6. Since 6 is
not a power of 2, ζ9 and therefore the regular 9-gon are not constructible. This is a
slick argument, although it’s probably good to know the first version too.

13.4.4 Determine the splitting field and its degree over Q for f(x) = x6 − 4.

Solution. This is a difference of squares, so f(x) = (x3 + 2)(x3 − 2). The roots of
x3 − 2 are 3

√
2, ζ 3

√
2, ζ2 3

√
2, where ζ is a primitive cube root of 1 and 3

√
2 is the unique

positive real cube root of 2. The roots of x3− 2 are cube roots of −2 i.e. the negatives
of the cube roots of 2. Thus, the splitting field of f(x) is just the splitting field of
x3 − 2 i.e. Q(ζ, 3

√
2), and this has degree 6.

13.5.2 Find all irreducible polynomials of degrees 1, 2 and 4 over F2 and prove that their
product is x16 − x.

Solution. This is a simple (if tedious) check. I’ll mention that it’s an example of a
more general phenomenon, which we’ll cover soon.

13.5.4 Let a > 1 be an integer. Prove for any positive integers n, d that d divides n if and
only if ad − 1 divides an − 1. Conclude in particular that Fpd ⊆ Fpn if and only if d
divides n.
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Solution. The first statement follows by setting x = a in Problem 13.5.3, which was
a homework problem. The second follows from setting a = p: pd − 1 divides pn − 1
if an only if d|n. Therefore, applying 13.5.3 again, xpd−1 − 1 divides xpn−1 − 1 if and
only if d|n. Multiplying by x, xpd −x divides xpn −x if and only if d|n. Now the result
follows since Fpm is the set of all roots of xpm − x lying in a fixed algebraic closure Fp.

13.6.6 Prove that for n odd, n > 1 that Φ2n(x) = Φn(−x)

Solution. The map ζ 7→ −ζ is a bijection between primitive roots of Φn and Φ2n, and
there are an even number of each (check these facts yourself). Therefore,

Φn(−x) =
∏
ζ∈µn

ζ primitive

(−x− ζ) = (−1)|µn|
∏
ζ∈µn

ζ primitive

(x+ ζ) =
∏
ζ∈µn

ζ primitive

(x+ ζ) = Φ2n(x).

13.6.10 Let ϕ denote the Frobenius map on Fpn· Prove that ϕ gives an automorphism of order
n

Solution. We’ve already proved ϕ is an automorphism, since Fpn is a finite field. Now,
ϕn(a) = ap

n
= a since the multiplicative group F×

pn has pn − 1 elements. Therefore,
the order of ϕ divides n. Conversely, if ϕ has order d then every element of Fpn is a

root of the polynomial xpd − x, and if d < n this is more roots than the degree of the
polynomial.

14.1.1 (a) Show that if the field K is generated over F by the elements a1, ..., an then an
automorphism a of K fixing F is uniquely determined by σ(a1), . . . , σ(an). In
particular, show that an automorphism fixes K if and only if it fixes a set of
generators for K.

Solution. Let σ, σ′ be two elements of Aut(K/F ) with the same images of
a1, . . . , an. Let E = {b ∈ K|σ(b) = σ′(b)} ⊆ K. Then E contains F and
an, . . . , an. However, E must be a field since if b, c ∈ E, σ(b+ c) = σ(b) + σ(c) =
σ′(b) + σ′(c) = σ′(b+ c), and similarly for multipication. Therefore, E = K since
K is the smallest field containing F, a1, . . . , an.

The second statement follows from the first.

(b) Let G ≤ Gal(K/F ) be a subgroup of the Galois group of the extension K/F and
suppose σ1, . . . , σk are generators for G. Show that the subfield E of K containing
F is fixed by G if and only if it is fixed by the generators σ1, . . . , σk.

Solution. This is similar to the above. If E is not fixed by σ1, . . . , σk, it certainly
isn’t fixed by all of G. On the other hand, the subset of Gal(K/F ) fixing E must
be a subgroup (proof: if σ(b) = b, σ′(b) = b, then σσ′(b) = b, and similarly for
inverse), so if E is fixed by σ1, . . . , σk, it is fixed by G.

14.1.9 Determine the fixed field of the automorphism ϕ : t 7→ t+ 1 of k(t)

Solution. One can show directly that this indeed determines a unique automorphism.
Let f(t) = p(t)/q(t), where p, q ∈ k[t] are relatively prime, and p is monic. If f(x) ∈
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Fix(ϕ), then f(t+1) = f(t), so p(t+1)/q(t+1) = p(t)/q(t), so p(t+1)q(t) = p(t)q(t+1).
This means that p(t)|p(t + 1)q(t), and since p(t) and q(t) are coprime, p(t)|p(t + 1).
Since p(t) and p(t+ 1) are both monic polynomials of the same degree, we must then
have p(t) = p(t+ 1), and by a similar argument q(t) = q(t+ 1).

Therefore, Fix(ϕ) is the set of functions f(t) = p(t)/q(t), where p, q ∈ k[t] are relatively
prime, p is monic, and p(t) = p(t + 1), q(t) = q(t + 1). We only need to determine
which polynomials have the property f(t+ 1) = f(t).

For any root α of f we have 0 = f(α) = f(α + 1) = f(α + 2) = · · · , so if char k = 0,
f has no root in any field i.e. f(t) ∈ k. If char k = p, then let λ(t) = t(t + 1) · · · (t +
p− 1) ∈ k[t]. We have λ(t) = λ(t+ 1), and any polynomial in k[t] generated by λ and
elements of k (e.g. λ2 +2λ+5) also has this property. Conversely, let f(t) = f(t+1),
and let f(0) = a. Then q(t) = f(t) − a has the same property, and q(0) = 0, so
q(1) = q(2) = · · · = q(p− 1) = 0, and so λ|q. By induction, every polynomial fixed by
ϕ is a multiple of λ plus a constant, and therefore the fixed field consists of rational
functions where both numerator and denominator are generated by λ and k.

14.1.10 Let K be an extension of the field F . Let ϕ : K → K ′ be an isomorphism of K with a
field K ′ which maps F to the subfield F ′ of K ′. Prove that the map σ 7→ ϕσϕ−1 defines
a group isomorphism Aut(K/F ) → Aut(K ′/F ).

Solution. If σ ∈ Aut(K/F ), then we first need to show that σ′ := ϕσϕ−1 is indeed an
element of Aut(K ′/F ′). Since σ is the composition of three isomorphisms, it is itself
an isomorphism, hence in Aut(K ′). Since σ fixes F , if a ∈ F ′, then ϕ−1(a) ∈ F , so
σ′(a) = ϕ(σ(ϕ−1(a))) = a, and σ′ ∈ Aut(K ′/F ′).

Now, if σ, τ ∈ Aut(K/F ), then στ 7→ ϕστϕ−1 = ϕσϕ−1 ·ϕτϕ−1, so this map is a homo-
morphism. It is injective since if ϕσϕ−1 = ϕτϕ−1, σ = ϕ−1ϕσϕ−1ϕ = ϕ−1ϕτϕ−1ϕ = τ .
Finally, for surjectivity, suppose that σ′ ∈ Aut(K ′/F ′). Then setting σ := ϕ−1σ′ϕ, we
have σ 7→ ϕσϕ−1 = ϕϕ−1σ′ϕϕ−1 = σ′.
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