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Math 418, Spring 2025 — Practice Problems 1

Prove that the quotient ring Z[i]/I is finite for any nonzero ideal I of Z][i].

Solution. Z[i] is Euclidean, hence a PID, so I = («) for some « € Z[i]. If 8 € Z]i],
The Euclidean algorithm guarantees that 8§ = ga + r for some ¢,r € Z[i] where
N(r) < N(a). But since N(z) = |z|? and Z[i] is discrete, there are only finitely many
such points; hence finitely many cosets.

(See D & F for problem)

(a) Let m be an lem of @ and b. Then m € (a) N (b). Suppose (n) C (a) N (b); then n
is a common multiple of @ and b, so by uniqueness of lem, m|n. If also n|m, then
(m) = (n), and if it doesn’t, (n) C (m).

(b) Uniqueness follows from part a. For existence, since Euclidean domains are PIDs,
the ideal (a) N (b) (intersection of ideals is an ideal) is principal, say equaling (m).
That m is an lem of @ and b can now be proved directly from the definition.

(c) Let d be a ged of a and b and let m := ab/d. m is a multiple of a since m = a - 2,

and similar for b. Conversely, if n is a least common multiple of a and b, then

m = nk,son =7 =a- d—bk is a multiple of a and thus b is a multiple of dk.
Similarly, a is a multiple of dk, so k is a unit.

Let I be nonprincipal, and let a; € I,by € I\ (a1). Let ay be a ged of a; that (by
condition (i)) is in I. Since by ¢ I, it can’t be an associate of ay, so (a;) € (a2). Let

=

by € I\ (az). Continue, getting a sequence ay, as, ... with a;41]a; where no a;y; is an
associate of a;, contradicting condition (ii).

(a) This is Homework 1, problem 6
(b) Prove that each ideal is maximal (see hint in D & F)

(c) Both factorizations expand to 3131} (see Homework 2, Problem 5c)
(see lecture notes)

Determine whether x® + x + 1 is irreducible in Fs|z]

Solution. Plug in all field elements to test for roots.

Prove that x® + nx + 2 is irreducible over Z for all integers n # 1, —3, —5.

Solution. Use the rational root theorem.
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Show that p(z) = 2* — 2x — 2 is irreducible over Q and let 6 be a root. Compute
(1+60)(1+6+62%) and % in Q(0).

Solution. Use the rational root theorem to show that p(z) doesn’t have a root in Q,
and is therefore irreducible. Alternatively, use Eisenstein’s criterion with the prime 2.

Since 6 is a root of p, 8% = 20 + 2, so
(1+0)(1+60+06% =1+20+20%+ 0> =3+ 40 + 26°.

For the final part, let a + b0 + c6? = 1+1;fe2' Then,

14+0=(a+bl+ch*)(1+6+06%
=a+(a+b)0+ (a+b+c)0?+ (b+c)0 + o
=a+ (a+b)0+ (a+b+c)0* + (b+c)(20 + 2) + c(26* + 20)
=a+2b+2c+ (a+3b+4c)0 + (a+ b+ 3c)6”.

Solving this system of equations gives
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Show that if a is a root of p(x) = apx"™ + ap_12" 1+ -+ + a1x + ag then aya is a root
of the monic polynomial q(x) = " + ap_ 12" + apay 92" 2 + - - + a"2ayz + a” tay.

Solution. This follows from the fact that q(a,r) = a" 'p(z).

(This is just a long computation without any tricks; you’ll know you got the right
answer if you got fields of the right sizes, and the multiplicative groups were cyclic)

Suppose the degree of the extension K/F is a prime p. Show that any subfield E of K
containing F is either K or F.

Solution. This is a straightforward consequence of the tower law. First note that a
degree one field extension is trivial, since the extension field is a dimension-one vector
space over the base field, and thus the same field. Then we have p = [K : F| = [K :
E][E : F], and since these are all integers one of [K : E] and [F : F| must be p, and
the other must be 1.



