Solutions to Math 418 Midterm Exam 3 — Apr. 23, 2025

- 1. (30 points) Let K be the splitting field of $x^4 3$ over \mathbb{Q} , and let $G = \text{Gal}(K/\mathbb{Q})$.
 - (a) (5 points) Determine K, and prove that $[K : \mathbb{Q}] = 8$.

The roots of f are $\pm \sqrt[4]{3}$ and $\pm i\sqrt[4]{3}$, so $K = \mathbb{Q}(i, \sqrt[4]{3})$. Since $\sqrt[4]{3}$ is the root of an irreducible degree 4 polynomial, $[\mathbb{Q}(\sqrt[4]{3}) : \mathbb{Q}] = 4$. Since $\mathbb{Q}(\sqrt[4]{3}) \subseteq \mathbb{R}$ and $K \not\subseteq \mathbb{R}$, we must have $[K : \mathbb{Q}(\sqrt[4]{3}] > 1$. Conversely, since $[\mathbb{Q}(i) : \mathbb{Q}] = 2$, $[K : \mathbb{Q}(\sqrt[4]{3}] \le 2$, so it equals 2. By the Tower Law, $[K : \mathbb{Q}] = 4 \cdot 2 = 8$.

(b) (10 points) The dihedral group D_8 of order 8 has the following presentation:

$$D_8 = \langle \sigma, \tau | \sigma^4 = \tau^2 = 1, \tau \sigma = \sigma^3 \tau \rangle.$$

Prove directly that $G \cong D_8$ by exhibiting automorphisms σ and τ that satisfy the above relations for D_8 , and showing that they satisfy these relations.

For any automorphism $\rho \in G$, we must have $\sqrt[4]{3} \mapsto i^a \sqrt[4]{3}$ for $a \in \{0, 1, 2, 3\}$ and $i \mapsto \pm i$. This gives a total of 8 possible automorphism, and since |G| = 8, all of them must be valid. Let

$$\tau: \begin{cases} \sqrt[4]{3} \mapsto i\sqrt[4]{3}, \\ i \mapsto i, \end{cases} \qquad \tau: \begin{cases} \sqrt[4]{3} \mapsto \sqrt[4]{3}, \\ i \mapsto -i. \end{cases}$$

Straightforward computations show that σ has order 4 and τ has order 2. For the other relation, we have

$$\tau \sigma : \begin{cases} \sqrt[4]{3} \mapsto i \sqrt[4]{3} \mapsto -i \sqrt[4]{3}, \\ i \mapsto i \mapsto -i, \end{cases} \quad \text{and} \quad \sigma^{3} \tau : \begin{cases} \sqrt[4]{3} \mapsto \sqrt[4]{3} \mapsto -i \sqrt[4]{3}, \\ i \mapsto -i \mapsto -i, \end{cases}$$

and we note that this automorphisms are equal on both generators.

(c) (15 points) Compute the subgroup lattice for D₈, and for each subgroup, compute the corresponding intermediate field. Draw both the subgroup lattice and the intermediate field lattice.
(Note: some of these subgroups/intermediate fields are more challenging than others. Finding most of the subgroups and getting their relative containments and fixed fields correct, will get most of the points for this problem.)

 D_8 has 1 element of order 1 (the identity), 5 elements of order 2 $(\tau, \sigma\tau, \sigma^2\tau, \sigma^3\tau, \sigma^2)$, and 2 elements of order 4 (σ, σ^3) . Thus, G has one subgroup of order 1 (the trivial group), five subgroups of order two:

$$H_1 = \langle \tau \rangle, \quad H_2 = \langle \sigma \tau \rangle, \quad H_3 = \langle \sigma^2 \tau \rangle, \quad H_4 = \langle \sigma^3 \tau \rangle, \quad H_5 = \langle \sigma^2 \rangle,$$

three subgroups of order four:

$$J_1 = \langle \sigma \rangle, \quad J_2 = \langle \sigma^2, \tau \rangle, \quad J_3 = \langle \sigma \tau, \sigma^3 \tau \rangle,$$

and one subgroup of order 8 (the whole group). We have

Fix
$$id = K$$
, Fix $H_1 = \mathbb{Q}(\sqrt[4]{3})$, Fix $H_2 = \mathbb{Q}(\sqrt[4]{3} + i\sqrt[4]{3})$, Fix $H_3 = \mathbb{Q}(i\sqrt[4]{3})$,
Fix $H_4 = \mathbb{Q}(\sqrt[4]{3} - i\sqrt[4]{3})$, Fix $H_5 = \mathbb{Q}(i,\sqrt{3})$, Fix $J_1 = \mathbb{Q}(i)$,
Fix $J_2 = \mathbb{Q}(\sqrt{3})$, Fix $J_3 = \mathbb{Q}(i\sqrt{3})$, Fix $G = \mathbb{Q}$.

The most difficult fixed fields to compute are probably Fix H_2 , Fix H_4 , and Fix J_3 . For the first two, we obtain the desired elements by summing over the orbit containing $\sqrt[4]{3}$, in a similar

manner to cyclotomic extensions. For Fix J_3 , if you got the fixed fields of H_2 and H_4 , note that $(\sqrt[4]{3}+i\sqrt[4]{3})(\sqrt[4]{3}-i\sqrt[4]{3})=2i\sqrt{3}$. Another possibility is to notice that Fix $J_3 \subseteq$ Fix $H_5 = \mathbb{Q}(i,\sqrt{3})$. This is a Galois extension over \mathbb{Q} with (nontrivial) intermediate fields $\mathbb{Q}(\sqrt{3}), \mathbb{Q}(i)$, and $\mathbb{Q}(i\sqrt{3})$, and we check which one of them is fixed J_3 .

To draw the diagrams, we note that

 $H_1 \subseteq J_2, \quad H_2 \subseteq J_3, \quad H_3 \subseteq J_2, \quad H_4 \subseteq J_3, \quad H_5 \subseteq J_1, J_2, J_3,$

and both the subgroup and intermediate field lattices are drawn accordingly. See the last page of the solutions for the diagrams.

- 2. (15 points) Let f be a monic irreducible polynomial of degree n in $\mathbb{F}_p[x]$.
 - (a) (10 points) Prove that for any $\alpha \in \mathbb{F}_{p^n}$, α is a root of f if and only if α^p is a root of f.

This can be done directly by writing out f in coefficients and taking the pth power directly, to show that $f(\alpha^p) = f(\alpha)^p$, so if $f(\alpha) = 0$, then $f(\alpha^p) = 0^p = 0$, and if $f(\alpha^p) = f(\alpha)^p = 0$, then since \mathbb{F}_p is an integral domain, $f(\alpha) = 0$.

The slicker way is to note that $\operatorname{Gal}(\mathbb{F}_{p^n}/\mathbb{F}_p)$ is the cyclic group generated by the Frobenius automorphism $\phi : a \mapsto a^p$. Automorphisms always map elements to roots of the same minimal polynomial, and so since f is irreducible, α is a root of f if and only if $\phi(\alpha) = \alpha^p$ is a root of f.

(b) (5 points) Let α be a root of f. Prove that the constant term of f must be $(-1)^n \alpha^{\frac{p^n-1}{p-1}}$.

The constant term of any polynomial is $(-1)^n$ times the product of its roots (with multiplicity). By the previous part, the roots are $\alpha, \alpha^p, \alpha^{p^2}, \ldots, \alpha^{p^{n-1}}$, and their product is

$$\alpha^{1+p+p^2+\dots+p^{n-1}} = \alpha^{\frac{1-p^n}{1-p}}$$

Not needed for the problem, but since $f \in \mathbb{F}_p[x]$, its constant term is in \mathbb{F}_p , so $\alpha^{\frac{p^n-1}{p-1}} \in \mathbb{F}_p$ for all $\alpha \in \mathbb{F}_{p^n}$.

3. (10 points) Let $f(x) = x^3 - 2x + 2 \in \mathbb{Q}[x]$. Determine the Galois group for f over \mathbb{Q} up to isomorphism (no need for specific elements). (*Hint: recall the discriminant of* $x^3 + px + q$ *is* $D = -4p^3 - 27q^2$)

f is irreducible by Eisenstein's criterion, with the prime 3, so since f is degree 3 its Galois group must be either A_3 or S_3 (the only two transitive subgroups of S_3). We apply the discriminant criterion: $D = -4p^3 - 27q^2 = -4(-2)^3 - 27(2^2) = (-4)(-8) - 27 \cdot 4 = 32 - 108 = -76$. This is negative, so is not a square in \mathbb{Q} ; therefore, by the discriminant criterion, $\operatorname{Gal}(f) \not\subseteq A_3$, so it equals S_3 .

- 4. (15 points) Determine the following, explaining your reasoning.
 - (a) (5 points) The radical of the ideal $I = (60) \subseteq \mathbb{Z}$.

 $60 = 2^2 \cdot 3 \cdot 5$, so if a^n is a multiple of 60 for any n, a must be a multiple of 2, 3, and 5; hence, a multiple of 30. Conversely, if a is a multiple of 30, then a^2 is a multiple of 900 = $15 \cdot 60$, so $a \in \sqrt{I}$. Thus, $\sqrt{I} = (30)$.

(b) (5 points) The variety V(I) corresponding to the ideal $I = (y - x^2, y - 3) \subseteq \mathbb{R}[x, y]$.

V(I) is the set of points $(x, y) \in \mathbb{R}^2$ such that $y - x^2 = 0$ and y - 3 = 0. Thus, y = 3, and so $x^2 = 3$, and therefore V(I) consists of two points: $(\sqrt{3}, 3)$ and $(-\sqrt{3}, 3)$.

(c) (5 points) The ideal I(V) corresponding to the variety $V \subseteq \mathbb{R}^2$ which is the circle of radius 4 centered at (1, 1).

V is the set of points $(x, y) \in \mathbb{R}^2$ such that $(x - 1)^2 + (y - 1)^2 = 4^2$. Moving everything to one side and expanding, $I(V) = ((x - 1)^2 + (y - 1)^2 - 4^2) = (x^2 - 2x + y^2 - 2y - 14)$.

