
Math 418, Spring 2025 – Homework 9

Due: Friday, April 18th, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are
from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless
otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain
you 1 bonus point per assignment.

1. Dummit and Foote #14.6.2a Determine the Galois group of the polynomial f(x) =
x3 − x2 − 4

Solution. f(x) = (x− 2)(x2+x+2) is reducible, so the Galois group of f is the same
as the Galois group of g(x) = x2+x+2. Now, g is irreducible by Eisenstein’s criterion
with the prime 2, which means that the splitting field of g and therefore g is a degree
2 extension of Q, and therefore the Galois group is the only group of order 2, Z/2Z.
For good measure, we compute the discriminant of g, which is D = −7. Since

√
D =√

−7 /∈ Q, this means that the Galois group of g is not contained in A2 = 1, so must
equal S2 = Z/2Z.

2. Dummit and Foote #14.6.10 Determine the Galois group of x5+x− 1. (Hint: see
D & F Proposition 14.21

Solution. Note that f factors: f(x) = (x2 − x + 1)(x3 + x2 − 1). Both of these
factors are irreducible since neither has a root modulo 2. The Galois group for the
quadratic factor g(x) is Z2, and the Galois group for the cubic factor h(x) is S3, since
its discriminant, D = −23, is not a square in Q.

LetK1 be the splitting field of g and letK2 be the splitting field of h. ThenK := K1K2

is the splitting field of f , and by D & F Proposition 21, Gal(K/Q) is the subgroup
of Gal(K1/Q) × Gal(K2/Q) of pairs of elements which are equal on the intersection
K1 ∩K2.

We claim that this intersection is simply Q, so that Gal(K/Q) ∼= Gal(K1/Q) ×
Gal(K2/Q). Suppose otherwise. Since K1 ∩ K2 ⊆ K1, and K1 has degree 2 over
Q, so must K1 ∩K2, and so K1 = K1 ∩K2 i.e. K1 ⊆ K2. By the quadratic formula,
K1 = Q(

√
−3). By the Galois correspondence, Gal(K2/K1) = A3 (since it must be an

index 2 subgroup of S3). Therefore, the discriminant D = −23 of h must be a square
in Q(

√
−3). However, this is not the case since

√
−23 is not a Q-linear combination of

1 and
√
−3.
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3. Let pk(x1, . . . , xn) = xk
1 + xk

2 + · · ·+ xk
n be the power sum symmetric function, and let

ek(x1, . . . , xn) =
∑

i1<...<ik
xi1 · · ·xik be the elementary symmetric function. Let

E(t) =
∞∑
r=0

er(x1, . . . , xn)t
r, P (t) =

∞∑
r=1

pr(x1, . . . , xn)t
r−1.

Prove that

E(t) =
n∏

i=1

(1 + xit), P (t) =
n∑

i=1

xi

1− xit
=

n∑
i=1

d

dt
ln

1

1− xit
.

Solution. (We won’t worry about convergence here, but notice that if x1, . . . , xn ∈ C
since there are finitely many xi, we may choose some t ∈ C, t ̸= 0 such that |txi| < 1
for all i. Therefore, all the relevant series converge in an open neighborhood of t = 0.)

First, the elementary symmetric functions. We have

E(t) =
∞∑
r=0

er(x1, . . . , xn)t
r

=
∞∑
r=0

∑
i1<...<ir

xi1 · · ·xirt
r

=
∞∑
r=0

∑
i1<...<ir

(xi1t) · · · (xirt)

=
∑

I⊆{1,2,...,n}

∏
i∈I

xit.

Expanding the product
∏n

i=1(1+xit) using the distributive law gives the same expres-
sion; the term

∏
i∈I xit corresponds to choosing xit from the factor 1+ xit when i ∈ I,

and choosing 1 when i /∈ I.

Next, the power sum symmetric functions. We have

P (t) =
∞∑
r=1

pr(x1, . . . , xn)t
r−1 =

∞∑
r=1

n∑
i=1

xr
i t

r−1 =
n∑

i=1

∞∑
r=1

xr
i t

r−1 =
n∑

i=1

xi

1− xit
,

summing the geometric series in the last step. For the second equality, using the chain
rule,

d

dt
ln

1

1− xit
= − d

dt
ln(1− xit) =

xi

1− xit
.

4. Dummit and Foote #14.6.22 Let f(x) be a monic polynomial of degree n with roots
α1, . . . , αn. Let ei be the elementary symmetric function of degree i in the roots and

2



define ei = 0 for i > n. Let pi = αi
1 + · · · + αi

n, i ≥ 0, be the sum of the ith powers of
the roots of f(x) Prove Newton’s formulas:

pn − e1pn−1 + e2pn−2 + · · ·+ (−1)n−1en−1p1 + (−1)nnen = 0.

(Hint: use solution to previous problem)

Solution. Multiply the desired equation by (−1)n and move everything but the last
term onto the opposite side of the equation. This becomes

nen =
n∑

r=1

(−1)r−1pren−r. (1)

The right side of (1) is the coefficient of tn−1 in P (−t)E(t) since

P (−t)E(t) =
∞∑
r=0

pr(−t)r−1

∞∑
m=0

emt
m =

∑
r,m≥0

(−1)r−1premt
r−1+m =

∑
n≥0

(∑
r≥0

(−1)r−1pren−r

)
tn−1.

On the other hand, using the previous problem, we have

d

dt
lnE(t) =

d

dt
ln

n∏
i=1

(1 + xit)

=
n∑

i=1

d

dt
ln(1 + xit)

=
n∑

i=1

d

dt

(
− ln

1

1 + xit

)
=

n∑
i=1

d

d(−t)

(
ln

1

1 + xit

)
= P (−t).

Using the chain rule,

P (−t) =
d

dt
lnE(t) =

E ′(t)

E(t)
,

so

P (−t)E(t) = E ′(t) =
∞∑
n=0

nent
n−1,

and the coefficient of tn−1 is the left side of (1).

Alternate proof: consider the polynomial f(x) =
∏n

i=1(x− xi). By results from class,
f(x) = xn − e1(x1, . . . , xn)x

n−1 + e2(x1, . . . , xn)x
n−2 + · · · + (−1)n−1en(x1, . . . , xn). f

has roots x1, . . . , xn, so, plugging in xi, x
n
i − e1x

n−1
i + e2x

n−2
i + · · · + (−1)n−1en = 0.

Summing over all i, we have pn − e1pn−1 + e2pn−2 + · · ·+ (−1)n−1nen = 0, as desired.
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5. Dummit and Foote #14.7.1 Use Cardano’s Formulas to solve the equation f(x) =
x3 + x2 − 2 = 0. In particular show that the equation has the real root

1

3

(
3

√
26 + 15

√
3 +

3

√
26− 15

√
3− 1

)
.

Show directly that the roots of this cubic are 1,−1± i. Explain this by proving that

3

√
26 + 15

√
3 = 2 +

√
3,

3

√
26− 15

√
3 = 2−

√
3

so that
3

√
26 + 15

√
3 +

3

√
26− 15

√
3 = 4.

Solution. f is associated to the depressed cubic g(y) = y3− 1
3
y− 52

27
by the parameter

shift x = y − 1
3
, as explained on page 630 of Dummit and Foote. The discriminant of

g is D = −4(−1/3)3 − 27(−52/27)2 = −100. The quantities A and B given on page
632 of Dummit and Foote are

A =
3

√
−27

2

−52

27
+

3

2

√
300 =

3

√
26 + 15

√
3, B =

3

√
−27

2

−52

27
− 3

2

√
300 =

3

√
26− 15

√
3.

Since A and B are both real, the real root of g is given by

A+B

3
=

1

3

(
3

√
26 + 15

√
3 +

3

√
26− 15

√
3

)
.

Because of the shift x = y = 1
3
, the corresponding root of f is

α :=
A+B

3
=

1

3

(
3

√
26 + 15

√
3 +

3

√
26− 15

√
3− 1

)
.

Now, f(1) = 13 +12 − 2 = 1+1+−2 = 0 and f(−1± i) = (−1± i)3 +(−1± i)2 − 2 =
(−1± 3i+ 3∓ i) + (1∓ 2i− 1)− 2 = 0, so these are the roots of f , and since 1 is the
only real root, we must have α = 1.

We have (2±
√
3)3 = 8± 12

√
3 + 18± 3

√
3 = 26± 15

√
3, so

3

√
26± 15

√
3 = 2±

√
3.

Thus, we have

α =
1

3

(
2 +

√
3 + 2−

√
3− 1

)
=

1

3
(4− 1) = 1,

as desired.
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6. Dummit and Foote #14.7.17 Let D ∈ Z be a squarefree integer and let a ∈ Q be a

nonzero rational number. Show that Q(
√

a
√
D) cannot be a cyclic extension of degree

4 over Q (i.e. Gal(Q(
√
a
√
D)/Q) cannot be Z/4Z).

Solution. α :=
√

a
√
D is a root of the polynomial f(x) = x4− a2D. If f is reducible,

the degree of Q(
√
a
√
D) over Q is less than 4, so assume that f is irreducible (as it is

unless a = 0 or
√
D ∈ Q).

The roots of f are ±α,±iα. Suppose Q(
√
a
√
D) is a cyclic extension of degree 4 over

Q; then this extension is Galois, and there exists a 4-cycle σ ∈ Gal(f). This means
that σ(α) = ±iα, so applying σ again, σ2(α) = σ(±iα) = ±σ(i)(±iα) = σ(i) · iα.
Since σ2(α) must equal −α if σ has order 4, we must have σ(i) = i. But then i is fixed
by Gal(f), which is a contradiction since i /∈ Q.

5


