Math 418, Spring 2025 – Homework 6

Due: Friday, March 14th, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, *Abstract Algebra*, *3rd Edition*. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 1 bonus point per assignment.

- 1. **Dummit and Foote #13.5.3:** Prove that d divides n if and only if $x^d 1$ divides $x^n 1$. (Hint: if n = qd + r, then $x^n 1 = (x^{qd+r} x^r) + (x^r 1)$)
- 2. **Dummit and Foote** #13.5.6: Prove that $x^{p^n-1} 1 = \prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} (x \alpha)$. Conclude that $\prod_{\alpha \in \mathbb{F}_{p^n}^{\times}} \alpha = (-1)^{p^n}$ so the product of the nonzero elements of a finite field is +1 if p = 2 and -1 if p is odd. For p odd and n = 1 derive Wilson 's Theorem: $(p-1)! = -1(\mod p)$.
- 3. **Dummit and Foote** #13.6.2: Let ζ_n be a primitive nth root of unity and let d be a divisor of n. Prove that ζ_n^d is a primitive (n/d)th root of unity.
- 4. **Dummit and Foote** #13.6.3: Prove that if a field contains the nth roots of unity for n odd then it also contains the 2nth roots of unity.
- 5. **Dummit and Foote** #13.6.7: Use the Mobius Inversion formula indicated in Section 14.3 to prove

$$\Phi_n(x) = \prod_{d|n} (x^d - 1)^{\mu(n/d)}.$$

- 6. **Dummit and Foote** #14.1.3: Determine the fixed field of complex conjugation on \mathbb{C} .
- 7. **Dummit and Foote** #14.1.5: Determine the automorphisms of the extension $\mathbb{Q}(\sqrt[4]{2})/\mathbb{Q}(\sqrt{2})$ explicitly. (Hint: Use Dummit & Foote Proposition 14.5)