Math 418, Spring 2025 – Homework 10

Due: Wednesday, May 7th, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, *Abstract Algebra, 3rd Edition*. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 1 bonus point per assignment.

- 1. Let k be an algebraically closed field, and consider the polynomial ring k[x, y].
 - (a) Let V be the x-axis, i.e. V = V(y). Prove that V is irreducible. [Hint: Show a prime ideal is radical.]
 - (b) Prove that V = V(x y) is irreducible.
 - (c) Prove that $S = \{(a, a) \in k^2 | a \neq 1\}$ is not an algebraic variety if $k = \mathbb{C}$.
 - (d) What is the decomposition of $V = V(x^2 y^2)$ into irreducibles? Warning: The answer depends on k!
- 2. Dummit and Foote #15.1.2 Show that each of the following rings are not Noetherian by exhibiting an explicit infinite increasing chain of ideals:
 - (a) the ring of continuous real valued functions on [0, 1]
 - (b) the ring of all functions from any infinite set X to $\mathbb{Z}/2\mathbb{Z}$.
- 3. Dummit and Foote #15.1.20 If f and g are irreducible polynomials in k[x, y] that are not associates (do not divide each other), show that V((f, g)) is either \emptyset or a finite set in k^2 . [Hint: If $(f, g) \neq (1)$, show (f, g) contains a nonzero polynomial in k[x] (and similarly a nonzero polynomial in k[y]) by letting R = k[x], F = k(x), and applying Gauss's Lemma to show f and g are relatively prime in F[y].]
- 4. **Dummit and Foote** #15.2.2 Let *I* and *J* be ideals in the ring *R*. Prove the following statements:
 - (a) If $I^k \subseteq J$ for some $k \ge 1$, then $\sqrt{I} \subseteq \sqrt{J}$.
 - (b) If $I^k \subseteq J \subseteq I$ for some $k \ge 1$, then $\sqrt{I} = \sqrt{J}$.
 - (c) $\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$.
 - (d) $\sqrt{\sqrt{I}} = \sqrt{I}$.

- (e) $\sqrt{I} + \sqrt{J} \subseteq \sqrt{I+J}$ and $\sqrt{I+J} = \sqrt{\sqrt{I} + \sqrt{J}}$.
- 5. Dummit and Foote #15.2.3 Prove that the intersection of two radical ideals is again a radical ideal.
- 6. Dummit and Foote #15.2.5 If $I = (xy, (x y)z) \subseteq k[x, y, z]$ prove that $\sqrt{I} = (xy, xz, yz)$. For this ideal prove directly that $V(I) = V(\sqrt{I})$, that V(I) is not irreducible, and that \sqrt{I} is not prime.
- 7. Cox, Little, and O'Shea #8.2.3 In this exercise, we will study how lines in \mathbb{R}^n relate to points at infinity in $P^n(\mathbb{R})$. We will use the decomposition $P^n(\mathbb{R}) = \mathbb{R}^n \cup P^{n-1}(\mathbb{R})$. Given a line L in \mathbb{R}^n , we can parametrize L by the formula a + bt, where $a \in L$ and b is a nonzero vector parallel to L. In coordinates, we write this parametrization as $(a_1 + b_1t, \ldots, a_n + b_nt)$.
 - (a) We can regard L as lying in $P^n(\mathbb{R})$ using the homogeneous coordinates

$$[1:a_1+b_1t:\cdots a_n+b_nt].$$

To find out what happens as $t \to \pm \infty$ divide by t to obtain

$$\left[\frac{1}{t}:\frac{a_1}{t}+b_1:\cdots,\frac{a_n}{t}+b_n\right].$$

As $t \to \pm \infty$, what point of $H = P^{n-1}(\mathbb{R})$ do you get?

- (b) The line L will have many parametrizations. Show that the point of $P^{n-1}(\mathbb{R})$ given by part (a) is the same for all parametrizations of L. Hint (from the book): Two nonzero vectors are parallel if and only if one is a scalar multiple of the other.
- (c) Parts (a) and (b) show that a line L in \mathbb{R}^n has a well-defined point at infinity in $H = P^{n-1}(\mathbb{R})$. Show that two lines in \mathbb{R}^n are parallel if and only if they have the same point at infinity.
- 8. Cox, Little, and O'Shea #8.2.7 In this exercise, we will study when a nonhomogeneous polynomial has a well-defined zero set in $P^n(k)$. Let k be an infinite field. We will show that if $f \in k[x_0, ..., x_n]$ is not homogeneous, but f vanishes on all homogeneous coordinates of some $p \in P^n(k)$, then each of the homogeneous components f_i of f (see Definition 6 of Chapter 7, Section 1) must vanish at p.
 - (a) Write f as a sum of its homogeneous components $f = \sum_i f_i$. If $p = (a_0, \ldots, a_n)$ then show that

$$f(\lambda a_0, \dots, \lambda a_n) = \sum_i f_i(\lambda a_0, \dots, \lambda a_n) = \sum_i \lambda^i f(a_0, \dots, a_n)$$

(b) Deduce that if f vanishes for all nonzero $\lambda \in k$, then $f_i(a_0, \ldots, a_n) = 0$ for all i