Math 418, Spring 2025 – Homework 10

Due: Wednesday, May 7th, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, *Abstract Algebra*, *3rd Edition*. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 1 bonus point per assignment.

- 1. Let k be an algebraically closed field, and consider the polynomial ring k[x,y].
 - (a) Let V be the x-axis, i.e. V = V(y). Prove that V is irreducible. [Hint: Show a prime ideal is radical.]

Solution. If I is a prime ideal, then if $a \cdots a = a^n \in I$, then a or a or a or a is in I, so $a \in I$ and so I is radical.

y is irreducible since it is degree 1, so it is prime since k[x,y] is a UFD. Therefore, (y) is a prime ideal, so by the bijection proved in class, V(y) is irreducible.

(Direct proof: Suppose $V = V_1 \cup V_2$. Since I := (y) is radical (by the above), I(V) = I, so $I = I(V_1) \cap I(V_2)$. Since I is prime, $I = I(V_1)$ or $I(V_2)$, say $I = V(I_1)$, and then $V_1 = V(I(V_1)) = V(I) = V$.)

- (b) Prove that V = V(x y) is irreducible.
 - **Solution.** Similarly, x y is irreducible since it is degree 1, so it is prime since k[x, y] is a UFD. Therefore, (x y) is a prime ideal, so by the bijection proved in class, V(x y) is irreducible.
- (c) Prove that $S = \{(a, a) \in k^2 | a \neq 1\}$ is *not* an algebraic variety if $k = \mathbb{C}$. **Solution.** Let $V = \{(a, a) \in k^2 | a \in k\}$. then this is a variety with I(V) = (x - y). If S is a variety, we have V(I(S)) = S. Let $f(x, y) \in I(S)$, and let g(x) = f(x, x). Since $f \in I(V)$, f(a, a) = 0 for all $a \neq 0$, so g(x) has roots at all $a \neq 0$. This is infinitely many roots and g is a polynomial, so g = 0, and so f(0, 0) = 0, so $f \in I(V)$. This means that I(S) = I(V), and $V(I(S)) \neq S$, meaning that S is not a variety.
- (d) What is the decomposition of $V = V(x^2 y^2)$ into irreducibles? **Warning:** The answer depends on k!

Solution. We have $x^2 - y^2 = (x+y)(x-y)$, so we have $V = V(x+y) \cup V(x-y)$. However, if char k = 2, then x + y = x - y, so in that case we simply have V = V(x+y).

- 2. **Dummit and Foote** #15.1.2 Show that each of the following rings are not Noetherian by exhibiting an explicit infinite increasing chain of ideals:
 - (a) the ring of continuous real valued functions on [0, 1] **Solution.** Let

$$I_j = \left\{ \text{functions } f : [0, 1] \to \mathbb{R} | f(x) = 0 \text{ for all } x \le \frac{1}{j} \right\}.$$

A direct check shows that this is an ideal, and we have

$$I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$$
.

Alternate solution: Let I_j be the principal ideal generated by $f_j(x) = \sqrt[2^j]{x}$. On the interval [0,1], this is a continuous real-valued function, and $f_j = f_{j+1}^2 \in (f_{j+1})$, so we have $I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots$. On the other hand, if $f_{j+1} \in (f_j)$, then $f_{j+1} = gf_j$ for some g in our ring. However, $\frac{f_{j+1}}{f_j} = \frac{1}{2^j\sqrt{x}}$ is not defined at 0, and in fact its limit as x approaches 0 is ∞ , so no such g exists.

(b) the ring of all functions from any infinite set X to $\mathbb{Z}/2\mathbb{Z}$.

Solution. Let a_1, a_2, \ldots be distinct elements of X. Let

$$I_j = \{ \text{functions } f: X \to \mathbb{Z}/2\mathbb{Z} | f(a_i) = 0 \text{ for all } i \ge j \}.$$

A direct check shows that this is an ideal, and we have

$$I_1 \subsetneq I_2 \subsetneq I_3 \subsetneq \cdots$$
.

3. Dummit and Foote #15.1.20 If f and g are irreducible polynomials in k[x,y] that are not associates (do not divide each other), show that V((f,g)) is either \emptyset or a finite set in k^2 . [Hint: If $(f,g) \neq (1)$, show (f,g) contains a nonzero polynomial in k[x] (and similarly a nonzero polynomial in k[y]) by letting R = k[x], F = k(x), and applying Gauss's Lemma to show f and g are relatively prime in F[y].]

Solution. Use the hint. If (f,g)=(1), then $V((f,g))=\emptyset$. Otherwise, let R=k[x], F=k(x), and consider f and g as elements of both R[y]=k[x,y] and F[y]. R is a UFD, so by Gauss' lemma, f and g are irreducible in F[y] since they are irreducible in R[y]. Since f and g are irreducible nonassociates, they are relatively prime, and since F[y] is a Euclidean domain we have fa+gb=1 for some $a,b\in F[y]$. Multiplying by a large enough power of x, we obtain $f\tilde{a}+g\tilde{b}\in k[x]$ for some $\tilde{a},\tilde{b}\in k[x,y]$; in other words (f,g) contains an element $g\in k[x]$. By a similar argument, (f,g) contains an element $g\in k[y]$. Every element of V((f,g)) must be a root of p and q, so must be of the form (a,b) with p(a)=q(b)=0. Since p and q are one-variable polynomials, they have finitely many roots, so V((f,g)) is finite.

4. **Dummit and Foote** #15.2.2 Let I and J be ideals in the ring R. Prove the following statements:

- (a) If $I^k \subseteq J$ for some $k \ge 1$, then $\sqrt{I} \subseteq \sqrt{J}$. **Solution.** If $x \in \sqrt{I}$, $x^n \in I$ for some n, so since $I^k \subseteq J$, $x^{kn} \in J$. Therefore, $x \in \sqrt{J}$.
- (b) If $I^k \subseteq J \subseteq I$ for some $k \ge 1$, then $\sqrt{I} = \sqrt{J}$. **Solution.** Applying the previous part twice, we have $\sqrt{I} \subseteq \sqrt{J} \subseteq \sqrt{I}$, so $\sqrt{I} = \sqrt{J}$.
- (c) $\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}$. **Solution.** If $x \in \sqrt{IJ}$, $x^n \in IJ \subseteq I \cap J$ for some n, so $x \in \sqrt{I \cap J}$. If $y \in \sqrt{I \cap J}$, $y^n \in I \cap J$ for some n, so $y^n \in I$ and $y^n \in J$, and $x \in \sqrt{I} \cap \sqrt{J}$. If $z \in \sqrt{I} \cap \sqrt{J}$, then for some $m, n, z^m \in I, z^n \in J$. Therefore, $z^{m+n} \in IJ$, so $z \in \sqrt{IJ}$.
- (d) $\sqrt{\sqrt{I}} = \sqrt{I}$. **Solution.** If $x \in \sqrt{\sqrt{I}}$, for some $m, x^m \in \sqrt{I}$, so for some $n, x^{mn} = (x^m)^n \in I$, so $x \in \sqrt{I}$. Conversely, every ideal is contained in its radical.
- (e) $\sqrt{I} + \sqrt{J} \subseteq \sqrt{I+J}$ and $\sqrt{I+J} = \sqrt{\sqrt{I}+\sqrt{J}}$. **Solution.** If $z \in \sqrt{I} + \sqrt{J}$, we have z = x+y with $x \in \sqrt{I}$, $y \in \sqrt{J}$. For some $m, n, x^m \in I, y^n \in J$, so $(x+y)^{m+n} = x^{m+n} + x^{m+n-1}y + \cdots + x^my^n + \cdots + y^{m+n} \in I+J$ since every term has a factor of x^m or y^n . Thus, $\sqrt{I} + \sqrt{J} \subseteq \sqrt{I+J}$. By part a, $\sqrt{\sqrt{I} + \sqrt{J}} \subseteq \sqrt{I+J}$. Conversely, $I \subseteq \sqrt{I}$, so $I + J \subseteq \sqrt{I} + \sqrt{J}$ and $\sqrt{I+J} \subseteq \sqrt{\sqrt{I} + \sqrt{J}}$.
- 5. **Dummit and Foote** #15.2.3 Prove that the intersection of two radical ideals is again a radical ideal.

Solution. Let I and J be radical ideals, and let $x^n \in I \cap J$. Then $x^n \in I$, so since I is radical, $x \in I$. Similarly, $x^n \in J$, so since J is radical $x \in J$. Therefore, $x \in I \cap J$, so $I \cap J$ is radical.

6. **Dummit and Foote** #15.2.5 If $I = (xy, (x - y)z) \subseteq k[x, y, z]$ prove that $\sqrt{I} = (xy, xz, yz)$. For this ideal prove directly that $V(I) = V(\sqrt{I})$, that V(I) is not irreducible, and that \sqrt{I} is not prime.

Solution. $z^2 \cdot xy + xz(x-y)z = x^2z^2 \in I$, so $xz \in \sqrt{I}$. Since $xy, (x-y)z \in I \subseteq \sqrt{I}$, $yz = xz - (x-y)z \in \sqrt{I}$. Now, (xy, xz, yz) contains all monomials with more than one variable, so since $x^n, y^n, z^n \notin I$ for any n, none of them are in \sqrt{I} either, so $\sqrt{I} = (xy, xz, yz)$.

We know that $V(I) = V(\sqrt{I})$ by the Nullstellensatz, but the problem asks to show it directly. $a = (x, y, z) \in V(\sqrt{I})$ iff xy = xz = yz = 0 iff at least two of x, y, and z are 0. On the other hand, $a = (x, y, z) \in V(I)$ iff xy = 0 and (x - y)z = 0 iff either x = 0 and -yz = 0 or y = 0 and xz = 0 iff at least two of x, y, and z are 0.

 $V(I) = \{(x,0,0)\} \cup \{(0,y,0)\} \cup \{(0,0,z)\} = V((y,z)) \cup V((x,z)) \cup V((x,y))$, and since none of these varieties is contained in the others, V(I) is reducible. Finally, \sqrt{I} is not prime since $xy \in \sqrt{I}$ but $x,y \notin \sqrt{I}$.

- 7. Cox, Little, and O'Shea #8.2.3 In this exercise, we will study how lines in \mathbb{R}^n relate to points at infinity in $P^n(\mathbb{R})$. We will use the decomposition $P^n(\mathbb{R}) = \mathbb{R}^n \cup P^{n-1}(\mathbb{R})$. Given a line L in \mathbb{R}^n , we can parametrize L by the formula a + bt, where $a \in L$ and b is a nonzero vector parallel to L. In coordinates, we write this parametrization as $(a_1 + b_1t, \ldots, a_n + b_nt)$.
 - (a) We can regard L as lying in $P^n(\mathbb{R})$ using the homogeneous coordinates

$$[1:a_1+b_1t:\cdots a_n+b_nt].$$

To find out what happens as $t \to \pm \infty$ divide by t to obtain

$$\left[\frac{1}{t}:\frac{a_1}{t}+b_1:\cdots\frac{a_n}{t}+b_n\right].$$

As $t \to \pm \infty$, what point of $H = P^{n-1}(\mathbb{R})$ do you get?

Solution. As we take the limit, the first coordinate, as well as every term of the form a_i/t goes to 0. So we obtain

$$\left[\frac{1}{t}: \frac{a_1}{t} + b_1: \cdots : \frac{a_n}{t} + b_n\right] \mapsto [0:b_1: \cdots : b_n] \mapsto [b_1: \cdots : b_n] \in H.$$

(b) The line L will have many parametrizations. Show that the point of $P^{n-1}(\mathbb{R})$ given by part (a) is the same for all parametrizations of L. Hint (from the book): Two nonzero vectors are parallel if and only if one is a scalar multiple of the other. **Solution.** Any parametrization of L has the form $(f_1(t), \ldots, f_n(t))$, where there is a continuous invertible function $g(t) : \mathbb{R} \to \mathbb{R}$ such that $f_i(t) = a_i + b_i g(t)$ for all i. In particular, $\lim_{t\to\infty} g(t) = \pm \infty$. Then we have

$$[1:f_1(t):\ldots:f_n(t)] = [1:a_1 + b_1g(t):\cdots:a_n + b_ng(t)]$$

$$= \left[\frac{1}{t}:\frac{a_1}{g(t)} + b_1:\cdots:\frac{a_n}{g(t)} + b_n\right]$$

$$\mapsto [0:b_1:\cdots:b_n]$$

$$\mapsto [b_1:\cdots:b_n] \in H.$$

(c) Parts (a) and (b) show that a line L in \mathbb{R}^n has a well-defined point at infinity in $H = P^{n-1}(\mathbb{R})$. Show that two lines in \mathbb{R}^n are parallel if and only if they have the same point at infinity.

Solution. By part (a), the line L parametrized as a+bt maps to the point $[b_1:\cdots:b_n]\in H$, and by part (b), this is independent of parametrization. Let L' be another line, parametrized as a'+b't. Then by part a, L' maps to the point $[b'_1:\cdots:b'_n]\in H$, which is the same point L maps to if and only if $b=\pm b'$ i.e. if and only if L and L' are parallel.

- 8. Cox, Little, and O'Shea #8.2.7 In this exercise, we will study when a nonhomogeneous polynomial has a well-defined zero set in $P^n(k)$. Let k be an infinite field. We will show that if $f \in k[x_0, ..., x_n]$ is not homogeneous, but f vanishes on all homogeneous coordinates of some $p \in P^n(k)$, then each of the homogeneous components f_i of f (see Definition 6 of Chapter 7, Section 1) must vanish at p.
 - (a) Write f as a sum of its homogeneous components $f = \sum_i f_i$. If $p = (a_0, \dots, a_n)$ then show that

$$f(\lambda a_0, \dots, \lambda a_n) = \sum_i f_i(\lambda a_0, \dots, \lambda a_n) = \sum_i \lambda^i f(a_0, \dots, a_n)$$

Solution. The first equality is by definition. For the second equality note that if $h(x_0, \ldots, x_n) = x_0^{e_0} \cdots x_n^{e_n}$, then

$$h(\lambda x_0, \dots, \lambda x_n) = (\lambda x_0)^{e_0} \cdots (\lambda x_n)^{e_n} = \lambda^{e_0 + \dots + e_n} x_0^{e_0} \cdots x_n^{e_n},$$

in other words, plugging in λx_i for each x_i multiplies any monomial by λ to the power of the degree of that monomial. The same is true for sums of monomials. Let $f_i = \sum_j h_{ij}$, where each h_{ij} is a monomial (of degree i) times a constant. Then,

$$f_i(\lambda a_0, \dots, \lambda a_n) = \sum_j h_{ij}(\lambda a_0, \dots, \lambda a_n) = \lambda^i h_{ij}(a_0, \dots, a_n) = \lambda^i f_i(a_0, \dots, a_n).$$

(b) Deduce that if f vanishes for all nonzero $\lambda \in k$, then $f_i(a_0, \ldots, a_n) = 0$ for all i **Solution.** Let $g_i(\lambda) = f_i(\lambda a_0, \ldots, \lambda a_n)$, and $g(\lambda) = f(\lambda a_0, \ldots, \lambda a_n)$. Note that these are single-variable polynomials, since p is fixed. By part (a), $g(\lambda) = \sum_i g_i(\lambda)$, and also by part (a), $g_i(\lambda) = c_i\lambda^i$ for some $c_i \in k$. If $f(\lambda a_0, \ldots, \lambda a_n) = 0$ for all nonzero $\lambda \in k$, then $g(\lambda) = 0$ for all nonzero $\lambda \in k$. But this means that g is the zero polynomial, which means all its coefficients must vanish, so $g_i = 0$ for all i, and therefore $f_i(\lambda a_0, \ldots, \lambda a_n)$ for all i and all i.