
Math 418, Spring 2025 – Homework 10

Due: Wednesday, May 7th, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are
from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless
otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain
you 1 bonus point per assignment.

1. Let k be an algebraically closed field, and consider the polynomial ring k[x, y].

(a) Let V be the x-axis, i.e. V = V (y). Prove that V is irreducible. [Hint: Show a
prime ideal is radical.]

Solution. If I is a prime ideal, then if a · · · a = an ∈ I, then a or a or . . . or a is
in I, so a ∈ I and so I is radical.

y is irreducible since it is degree 1, so it is prime since k[x, y] is a UFD. Therefore,
(y) is a prime ideal, so by the bijection proved in class, V (y) is irreducible.

(Direct proof: Suppose V = V1 ∪ V2. Since I := (y) is radical (by the above),
I(V ) = I, so I = I(V1)∩I(V2). Since I is prime, I = I(V1) or I(V2), say I = V (I1),
and then V1 = V (I(V1)) = V (I) = V .)

(b) Prove that V = V (x− y) is irreducible.

Solution. Similarly, x − y is irreducible since it is degree 1, so it is prime since
k[x, y] is a UFD. Therefore, (x− y) is a prime ideal, so by the bijection proved in
class, V (x− y) is irreducible.

(c) Prove that S = {(a, a) ∈ k2|a ̸= 1} is not an algebraic variety if k = C.
Solution. Let V = {(a, a) ∈ k2|a ∈ k}. then this is a variety with I(V ) = (x−y).
If S is a variety, we have V (I(S)) = S. Let f(x, y) ∈ I(S), and let g(x) = f(x, x).
Since f ∈ I(V ), f(a, a) = 0 for all a ̸= 0, so g(x) has roots at all a ̸= 0. This
is infinitely many roots and g is a polynomial, so g = 0, and so f(0, 0) = 0, so
f ∈ I(V ). This means that I(S) = I(V ), and V (I(S)) ̸= S, meaning that S is
not a variety.

(d) What is the decomposition of V = V (x2 − y2) into irreducibles? Warning: The
answer depends on k!
Solution. We have x2−y2 = (x+y)(x−y), so we have V = V (x+y)∪V (x−y).
However, if char k = 2, then x + y = x − y, so in that case we simply have
V = V (x+ y).
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2. Dummit and Foote #15.1.2 Show that each of the following rings are not Noethe-
rian by exhibiting an explicit infinite increasing chain of ideals:

(a) the ring of continuous real valued functions on [0, 1]

Solution. Let

Ij =

{
functions f : [0, 1] → R|f(x) = 0 for all x ≤ 1

j

}
.

A direct check shows that this is an ideal, and we have

I1 ⊊ I2 ⊊ I3 ⊊ · · · .

Alternate solution: Let Ij be the principal ideal generated by fj(x) = 2j
√
x. On

the interval [0, 1], this is a continuous real-valued function, and fj = f 2
j+1 ∈ (fj+1),

so we have I1 ⊆ I2 ⊆ I3 ⊆ · · · . On the other hand, if fj+1 ∈ (fj), then fj+1 = gfj
for some g in our ring. However,

fj+1

fj
= 1

2j√x
is not defined at 0, and in fact its

limit as x approaches 0 is ∞, so no such g exists.

(b) the ring of all functions from any infinite set X to Z/2Z.
Solution. Let a1, a2, . . . be distinct elements of X. Let

Ij = {functions f : X → Z/2Z|f(ai) = 0 for all i ≥ j}.

A direct check shows that this is an ideal, and we have

I1 ⊊ I2 ⊊ I3 ⊊ · · · .

3. Dummit and Foote #15.1.20 If f and g are irreducible polynomials in k[x, y] that
are not associates (do not divide each other), show that V ((f, g)) is either ∅ or a finite
set in k2. [Hint: If (f, g) ̸= (1), show (f, g) contains a nonzero polynomial in k[x] (and
similarly a nonzero polynomial in k[y]) by letting R = k[x], F = k(x), and applying
Gauss’s Lemma to show f and g are relatively prime in F [y].]

Solution. Use the hint. If (f, g) = (1), then V ((f, g)) = ∅. Otherwise, let R =
k[x], F = k(x), and consider f and g as elements of both R[y] = k[x, y] and F [y]. R is
a UFD, so by Gauss’ lemma, f and g are irreducible in F [y] since they are irreducible
in R[y]. Since f and g are irreducible nonassociates, they are relatively prime, and
since F [y] is a Euclidean domain we have fa+gb = 1 for some a, b ∈ F [y]. Multiplying
by a large enough power of x, we obtain fã+ gb̃ ∈ k[x] for some ã, b̃ ∈ k[x, y]; in other
words (f, g) contains an element p ∈ k[x]. By a similar argument, (f, g) contains an
element q ∈ k[y]. Every element of V ((f, g)) must be a root of p and q, so must be of
the form (a, b) with p(a) = q(b) = 0. Since p and q are one-variable polynomials, they
have finitely many roots, so V ((f, g)) is finite.

4. Dummit and Foote #15.2.2 Let I and J be ideals in the ring R. Prove the following
statements:
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(a) If Ik ⊆ J for some k ≥ 1, then
√
I ⊆

√
J .

Solution. If x ∈
√
I, xn ∈ I for some n, so since Ik ⊆ J , xkn ∈ J . Therefore,

x ∈
√
J .

(b) If Ik ⊆ J ⊆ I for some k ≥ 1, then
√
I =

√
J .

Solution. Applying the previous part twice, we have
√
I ⊆

√
J ⊆

√
I, so√

I =
√
J .

(c)
√
IJ =

√
I ∩ J =

√
I ∩

√
J .

Solution. If x ∈
√
IJ , xn ∈ IJ ⊆ I∩J for some n, so x ∈

√
I ∩ J . If y ∈

√
I ∩ J ,

yn ∈ I ∩ J for some n, so yn ∈ I and yn ∈ J , and x ∈
√
I ∩

√
J . If z ∈

√
I ∩

√
J ,

then for some m,n, zm ∈ I, zn ∈ J . Therefore, zm+n ∈ IJ , so z ∈
√
IJ .

(d)
√√

I =
√
I.

Solution. If x ∈
√√

I, for some m, xm ∈
√
I, so for some n, xmn = (xm)n ∈ I,

so x ∈
√
I. Conversely, every ideal is contained in its radical.

(e)
√
I +

√
J ⊆

√
I + J and

√
I + J =

√√
I +

√
J .

Solution. If z ∈
√
I+

√
J , we have z = x+y with x ∈

√
I, y ∈

√
J . For somem,n,

xm ∈ I, yn ∈ J , so (x+y)m+n = xm+n+xm+n−1y+ · · ·+xmyn+ · · ·+ym+n ∈ I+J
since every term has a factor of xm or yn. Thus,

√
I +

√
J ⊆

√
I + J . By part a,√√

I +
√
J ⊆

√
I + J . Conversely, I ⊆

√
I, J ⊆

√
J , so I + J ⊆

√
I +

√
J and√

I + J ⊆
√√

I +
√
J .

5. Dummit and Foote #15.2.3 Prove that the intersection of two radical ideals is again
a radical ideal.

Solution. Let I and J be radical ideals, and let xn ∈ I ∩ J . Then xn ∈ I, so since I
is radical, x ∈ I. Similarly, xn ∈ J , so since J is radical x ∈ J . Therefore, x ∈ I ∩ J ,
so I ∩ J is radical.

6. Dummit and Foote #15.2.5 If I = (xy, (x − y)z) ⊆ k[x, y, z] prove that
√
I =

(xy, xz, yz). For this ideal prove directly that V (I) = V (
√
I), that V (I) is not irre-

ducible, and that
√
I is not prime.

Solution. z2 · xy + xz(x− y)z = x2z2 ∈ I, so xz ∈
√
I. Since xy, (x− y)z ∈ I ⊆

√
I,

yz = xz − (x − y)z ∈
√
I. Now, (xy, xz, yz) contains all monomials with more than

one variable, so since xn, yn, zn /∈ I for any n, none of them are in
√
I either, so√

I = (xy, xz, yz).

We know that V (I) = V (
√
I) by the Nullstellensatz, but the problem asks to show it

directly. a = (x, y, z) ∈ V (
√
I) iff xy = xz = yz = 0 iff at least two of x, y, and z are

0. On the other hand, a = (x, y, z) ∈ V (I) iff xy = 0 and (x− y)z = 0 iff either x = 0
and −yz = 0 or y = 0 and xz = 0 iff at least two of x, y, and z are 0.

V (I) = {(x, 0, 0)}∪{(0, y, 0)}∪{(0, 0, z)} = V ((y, z))∪V ((x, z))∪V ((x, y)), and since
none of these varieties is contained in the others, V (I) is reducible. Finally,

√
I is not

prime since xy ∈
√
I but x, y /∈

√
I.
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7. Cox, Little, and O’Shea #8.2.3 In this exercise, we will study how lines in Rn relate
to points at infinity in P n(R). We will use the decomposition P n(R) = Rn ∪ P n−1(R).
Given a line L in Rn, we can parametrize L by the formula a + bt, where a ∈ L and
b is a nonzero vector parallel to L. In coordinates, we write this parametrization as
(a1 + b1t, . . . , an + bnt).

(a) We can regard L as lying in P n(R) using the homogeneous coordinates

[1 : a1 + b1t : · · · an + bnt].

To find out what happens as t → ±∞ divide by t to obtain[
1

t
:
a1
t
+ b1 : · · ·

an
t
+ bn

]
.

As t → ±∞, what point of H = P n−1(R) do you get?
Solution. As we take the limit, the first coordinate, as well as every term of the
form ai/t goes to 0. So we obtain[

1

t
:
a1
t
+ b1 : · · ·

an
t
+ bn

]
7→ [0 : b1 : · · · bn] 7→ [b1 : · · · : bn] ∈ H.

(b) The line L will have many parametrizations. Show that the point of P n−1(R)
given by part (a) is the same for all parametrizations of L. Hint (from the book):
Two nonzero vectors are parallel if and only if one is a scalar multiple of the other.
Solution. Any parametrization of L has the form (f1(t), . . . , fn(t)), where there
is a continuous invertible function g(t) : R → R such that fi(t) = ai + big(t) for
all i. In particular, limt→∞ g(t) = ±∞. Then we have

[1 : f1(t) : . . . : fn(t)] = [1 : a1 + b1g(t) : · · · : an + bng(t)]

=

[
1

t
:

a1
g(t)

+ b1 : · · · :
an
g(t)

+ bn

]
7→ [0 : b1 : · · · : bn]
7→ [b1 : · · · : bn] ∈ H.

(c) Parts (a) and (b) show that a line L in Rn has a well-defined point at infinity in
H = P n−1(R). Show that two lines in Rn are parallel if and only if they have the
same point at infinity.
Solution. By part (a), the line L parametrized as a + bt maps to the point
[b1 : · · · : bn] ∈ H, and by part (b), this is is independent of parametrization. Let
L′ be another line, parametrized as a′+ b′t. Then by part a, L′ maps to the point
[b′1 : · · · : b′n] ∈ H, which is the same point L maps to if and only if b = ±b′ i.e. if
and only if L and L′ are parallel.
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8. Cox, Little, and O’Shea #8.2.7 In this exercise, we will study when a nonhomo-
geneous polynomial has a well-defined zero set in P n(k). Let k be an infinite field. We
will show that if f ∈ k[x0, ..., xn] is not homogeneous, but f vanishes on all homoge-
neous coordinates of some p ∈ P n(k), then each of the homogeneous components fi of
f (see Definition 6 of Chapter 7, Section 1) must vanish at p.

(a) Write f as a sum of its homogeneous components f =
∑

i fi. If p = (a0, . . . , an)
then show that

f(λa0, . . . , λan) =
∑
i

fi(λa0, . . . , λan) =
∑
i

λif(a0, . . . , an)

Solution. The first equality is by definition. For the second equality note that if
h(x0, . . . , xn) = xe0

0 · · · xen
n , then

h(λx0, . . . , λxn) = (λx0)
e0 · · · (λxn)

en = λe0+···+enxe0
0 · · ·xen

n ,

in other words, plugging in λxi for each xi multiplies any monomial by λ to the
power of the degree of that monomial. The same is true for sums of monomials.
Let fi =

∑
j hij, where each hij is a monomial (of degree i) times a constant.

Then,

fi(λa0, . . . , λan) =
∑
j

hij(λa0, . . . , λan) = λihij(a0, . . . , an) = λifi(a0, . . . , an).

(b) Deduce that if f vanishes for all nonzero λ ∈ k, then fi(a0, . . . , an) = 0 for all i
Solution. Let gi(λ) = fi(λa0, . . . , λan), and g(λ) = f(λa0, . . . , λan). Note
that these are single-variable polynomials, since p is fixed. By part (a), g(λ) =∑

i gi(λ), and also by part (a), gi(λ) = ciλ
i for some ci ∈ k. If f(λa0, . . . , λan) = 0

for all nonzero λ ∈ k, then g(λ) = 0 for all nonzero λ ∈ k. But this means that g
is the zero polynomial, which means all its coefficients must vanish, so gi = 0 for
all i, and therefore fi(λa0, . . . , λan) for all i and all λ.
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