
Math 418, Spring 2025 – Homework 1

Due: Wednesday, January 29th, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are
from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless
otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain
you 1 bonus point per assignment.

1. Dummit and Foote #7.1.3: Let R be a ring with identity and let S be a subring of
R containing the identity. Prove that if u is a unit in S then u is a unit in R. Show
by example that the converse is false.

Solution: Since 1R ∈ S, and by uniqueness of identity, 1R = 1S = 1 is the identity in
S. If u is a unit in S, then there exists v ∈ S such that uv = vu = 1. Since S ⊆ R,
v ∈ R, so u is a unit in R.

On the other hand, if R = Q, S = Z, then S is subring of R containing the identity.
However, 2 is a unit in R but not S.

2. Dummit and Foote #7.1.11: Prove that if R is an integral domain and x2 = 1 for
some x ∈ R then x = ±1.

Solution: Since x2 = 1, (x + 1)(x − 1) = x2 − 1 = 0. Since x is an integral domain,
either x+ 1 = 0 or x− 1 = 0, so x = ±1.

3. Dummit and Foote #7.2.1: Let p(x) = 2x3−3x2+4x−5 and let q(x) = 7x3+33x−4.
In each of parts (a), (b) and (c) compute p(x)+q(x) and p(x)q(x) under the assumption
that the coefficients of the two given polynomials are taken from the specified ring (where
the integer coefficients are taken mod n in parts (b) and (c) ).

(a) R = Z.
Solution: We simply do the usual polynomial addition and multiplication: p(x)+
q(x) = 9x3 +3x2 +37x− 9 and p(x)q(x) = 14x6 − 21x5 +94x4 − 142x3 +144x2 −
181x+ 20.

(b) R = Z/2Z.
Solution: We reduce the expressions from the first part modulo 2: p(x)+ q(x) =
x3 + x2 + x+ 1 and p(x)q(x) = x5 + x.

(c) R = Z/3Z.
Solution: We reduce the expressions from the first part modulo 3: p(x)+q(x) = x
and p(x)q(x) = 2x6 + x4 + 2x3 + x+ 2.
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4. Dummit and Foote #7.3.2: Prove that the rings Z[x] and Q[x] are not isomorphic.

Solution: There are several approaches here. One way is to note that over an integral
domain R, deg(p(x)q(x)) = deg(p(x)) + deg(q(x)) (Proof: if p(x) = anx

n+ (lower-
degree terms) and q(x) = bmx

m+ (lower-degree terms), then p(x)q(x) = anbmx
n+m+

(lower-degree terms), and this coefficient is nonzero since R is an integral domain).
Therefore, since all polynomials have nonnegative degrees, all units in R[x] are units
of R. In Z the units are {±1} while in Q[x] the units are Q \ {0}. These have different
cardinalities, so there cannot be an isomorphism Z[x] → Q[x] since such a map would
need to biject the sets of units.

5. Dummit and Foote #7.4.15: Let x2+x+1 be an element of the polynomial ring E =
F2[x] and use the bar notation to denote passage to the quotient ring F2[x]/(x

2+x+1).

(a) Prove that E has 4 elements: 0, 1, x, and x+ 1.

Solution: If e ∈ E, then e can be written as a degree-one polynomial since
in E, x2 = x + 1, x3 = x(x + 1) = x2 + x = 1, and so x3k = 1, x3k+1 = x,
x3k+2 = x+ 1. Therefore, E = {0, 1, x, x+ 1} since these are the only degree-one
polynomials over F2. On the other hand, these elements are distinct since their
pairwise differences in E all have degree ≤ 1, so cannot be multiples of x2+x+1
(since F2 is an integral domain; see reasoning from Problem 4).

(b) Write out the 4× 4 addition table for E and deduce that the additive group E is
isomorphic to the Klein 4-group.

Solution: Addition table below. This is a group of order 4 which is not cyclic,
so it is the Klein-4 group.

+ 0 1 x x+ 1

0 0 1 x x+ 1

1 1 0 x+ 1 x

x x x+ 1 0 1

x+ 1 x+ 1 x 1 0

(c) Write out the 4 × 4 multiplication table for E and prove that E
×
is isomorphic

to the cyclic group of order 3. Deduce that E is a field.

Solution: Multiplication table below. Note that E \ {0} consists of 3 elements,
with (multiplicative) identity 1, and both x and x+ 1 have inverses. Therefore,

E
×
= E \ {0} is the cyclic group of order 3, and since every element of E \ {0}

is a unit, E is a field. [In fact, the multiplicative group of a finite field is always
cyclic.]
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∗ 0 1 x x+ 1

0 0 0 0 0

1 0 1 x x+ 1

x 0 x x+ 1 1

x+ 1 0 x+ 1 1 x

6. Consider R = Z[
√
−5] with the (non-Euclidean) norm N : R → Z≥0 given by N(a) =

|a|2 (Here, |a| refers to the absolute value in C). Note that N(a · b) = N(a)N(b).

(a) Prove that a ∈ R is a unit if and only if N(a) = 1. Find all the units in R.

Solution: Suppose a is a unit. Then

1 = N(1) = N(a · a−1) = N(a)N(a−1)

Since N(a) and N(a−1) are positive integers, the equality above forces N(a) = 1.
Conversely suppose N(a) = 1. If a = x+ y

√
−5, then

N(a) = x2 + 5y2 = 1.

This forces y = 0 and x = ±1. So a is a unit. In particular, the same argument
shows that the units of R are {1,−1}.

(b) Recall that r ∈ R is irreducible if whenever r = ab then one of a or b is a unit. Use
the norm to show that 2, 3, 1 +

√
−5, and 1 −

√
−5 are all irreducible elements

of R.

Solution: Consider 2 ∈ R. Suppose 2 = (x1 + y1
√
−5)(x2 + y2

√
−5). Taking

norms both sides

4 = (x2
1 + 5y21)(x

2
2 + 5y22) = x2

1x
2
2 + 5(· · · )

This has solution x1 = ±1; y1 = 0;x2 = ±2; y2 = 0 or vice versa, showing that 2
is irreducible.

Next, consider 1+
√
−5. Suppose 1+

√
−5 = (x1+y1

√
−5)(x2+y2

√
−5). Taking

norms both sides

6 = (x2
1 + 5y21)(x

2
2 + 5y22) = x2

1x
2
2 + 5(x2

1y
2
2 + x2

2y
2
1 + 5y21y

2
2).

Since 6 is squarefree, the only solutions are x1 = ±1; y1 = 0;x2 = ±1; y2 = ±1 or
vice versa, showing that 1 +

√
−5 is irreducible.

Similar arguments work for the other two cases.
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(c) Show that 2, 3, 1 +
√
−5, and 1 −

√
−5 are not unit multiples of one another,

proving that R lacks unique factorization since 6 = 2 · 3 = (1 +
√
−5)(1−

√
−5).

Solution: By part (a) the only units are ±1, so the first statement follows by
inspection. The example given shows that R lacks unique factorization since both
factorizations are into irreducibles, but the two factorizations are not the same
up to rearrangement and/or units.

7. Let R be an integral domain. Recall that g is a greatest common divisor of two elements
a, b ∈ R if g divides a and b, and if d divides a and b then d divides g.

(a) Show that if g and g′ are two gcds of a, b ∈ R, g′ = ug for some unit u.

Solution: Since g and g′ are both gcds of a and b, they divide each other; say
g = ug′, g′ = vg. Then uv = vu = 1, so u and v are inverses and therefore units
in R.

(b) Let R = Z[
√
−5]. Prove that 6 and 2 + 2

√
−5 have no gcd. (Hint: Use the fact

that 2 and 1 +
√
−5 are both common divisors of these elements)

Solution: We have 6 = 2 ·3 = (1+
√
−5)(1−

√
−5) and 2+2

√
−5 = 2(1+

√
−5),

so 2 and 1 +
√
−5 are common divisors of 6 and 2 + 2

√
−5. If g is a gcd of 6

and 2 + 2
√
−5, then both 2 and 1 +

√
−5 divide g. Since N(ab) = N(a)N(b)

for all a, b ∈ Z[
√
−5], we have 4 = N(2)|N(g) and 6 = N(1 +

√
5)|N(g), and

also N(g)|N(6) = 36 and N(g)|N(2 + 2
√
−5) = 24. This means that N(g) = 12,

but this is impossible since a simple check shows that there are no nonnegative
integers a and b such that |a+ b

√
−5| = a2 + 5b2 = 12.
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