
Solutions to Math 418 Final Exam — May 13, 2025

1. (20 points) Let a be an even integer greater than 2. Prove that the polynomial f(x) = x5−ax+2 ∈ Q[x]
is not solvable by radicals.

As in the proof in class, we want to show that f is irreducible and that it has precisely two nonreal
roots. Then |Gal(f)| is a multiple of 5, so it has a Sylow 5-subgroup, and therefore has elements of
order 5, which in S5 must be 5-cycles. In addition, complex conjugation (restricted to SpQ(f)) fixes
the three real roots and swaps the other two i.e. it is a two-cycle. In S5, any 5-cycle and any 2-cycle
generate the whole group, so Gal(f) = S5. Since S5 is not solvable, by Galois’ Solvability Theorem,
f(x) is not solvable by radicals.

f(x) is irreducible by Eisenstein’s criterion with p = 2. Since the top-degree term is odd-degree
with positive coefficient, f(x) < 0 for x ≪ 0 and f(x) > 0 for x ≫ 0. Since f(0) = 2 > 0 and
f(1) = 3− a < 0, the Intermediate Value Theorem guarantees that f(x) has at least 3 real roots.

To see that f(x) doesn’t have more than 3 real roots, note that f ′(x) = 5x4 − a. This has roots
±α,±iα, where α = 4

√
a/5, and two of these four roots are real. By the Mean Value Theorem, f(x)

can’t have more than 2 + 1 = 3 real roots, so f satisfies the desired conditions and is not solvable by
radicals.

2. (20 points) Let R be a commutative ring with 1, and let a, b ∈ R be nonzero. m ∈ R is a least common
multiple if a|m, b|m, and if a|m′ and b|m′, then m|m′.

(a) (10 points) Prove that if R is a UFD, then all nonzero a, b ∈ R have a least common multiple.

Since R is a UFD, both a and b have factorizations into a finite number of irreducibles, unique
up to associates. Choose a set of irreducibles p1, . . . , pn containing all the irreducibles in either
of these factorization (again up to units). Then

a = upe11 · · · penn , b = vpf11 · · · pfnn ,

where ei, fi ∈ Z≥0 and u, v are units. Let gi := max(ei, fi), and m := pg11 · · · pgnn . Then a|m since

m = a · u−1upg1−e1
1 · · · pgn−en

n ,

and similarly, b|m. If a|m′ and b|m′, then consider the exponent hi of pi in the irreducible
factorization of m′. We must have ei ≤ hi since a|m′ and fi ≤ hi since b|m′. Therefore,
hi ≥ max(ei, fi) = gi for all i, so m|m′.

(b) (10 points) Consider the ring Z[
√
−5]. Prove that there exist nonzero elements a and b in this ring

which do not have a least common multiple. (Hint: recall from Homework 1 that 2, 3, 1 +
√
−5,

and 1−
√
−5 are all irreducible, and are pairwise nonassociates)

We show that a = 2 and b = 1+
√
−5 do not have a least common multiple. Let c = 2+2

√
−5 = ab

and d = 6 = 3a = (1−
√
−5)b.

Suppose a and b have a least common multiple m. Then m|c and m|d. Since the norm N(x +
y
√
−5) = x2 + 5y2 is multiplicative, N(m)|N(c) = 24, and N(m)|N(d) = 36, so N(m)|12. We

also have 4 = N(a)|N(m) and 6 = N(b)|N(m), so 12|N(m) Therefore, N(m) = 12; however, if
m = x + y

√
−5, then x2 + 5y2 = 12. We must have y = 0 or y = 1, but neither 12 nor 7 is a

square; hence this is impossible.

3. (12 points) Recall the projective twisted cubic

W = {[a3 : a2b : ab2 : b3]|a, b ∈ C, not both 0} ⊆ P3(C).

Recall also the decomposition

P3(C) = C3 ∪ P2(C) = {[1 : x : y : z]} ∪ {[0 : x : y : z]}.
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(a) (6 points) Prove that W ∩ C3 is the affine twisted cubic V = {(t, t2, t3)|t ∈ C}.

Let w ∈ W∩C3. Then w is of the form [1 : b/a : (b/a)2 : (b/a)3] = [1 : t : t2 : t3] 7→ (t, t2, t3) ∈ C3,
where t = b

a (note that a ̸= 0 since a3 ̸= 0). Conversely, given t ∈ C, the point [1 : t : t2 : t3] ∈
P3(C), and it’s in W by setting a = 1, b = t.

Alternate solution: set a3 = 1; the point in W becomes [1 : a2b : ab2 : b3]. Since a is a cube root
of 1, so is a2, say a2 = ζ. So the point is [1 : ζb : (ζb)2 : (ζb)3], and set t = ζb.

(b) (6 points) Determine the affine variety W ∩ P2(C).

Let w ∈ W ∩ P2(C). Then we must have a = 0, so w = [0 : 0 : 0 : b3] = [0 : 0 : 0 : 1] 7→ [0 : 0 :
1] ∈ P2(C).
[Note that in some sense this is the “point at infinity” of the affine twisted cubic; when t gets
large, t and t2 get very small compared to t3. Here we are working with points up to a global
scalar, so [t : t2 : t3] → [0 : 0 : 1]. Another way to look at this is that there is a point at infinity
of P3 for every equivalence class of parallel lines, and as t gets large, the curve (t, t2, t3) becomes
nearly parallel with (0, 0, 1).]

4. (30 points) (a) (15 points) Let K be the splitting field of x8 − 1 over Q. Compute the Galois group
Gal(K/Q) up to isomorphism, and use the Galois correspondence to compute and draw the lattice
of intermediate fields Q ⊆ E ⊆ K.

Let ζ be a primitive 8th root of 1. By Dummit and Foote Theorem 14.26, Gal(K/Q) ∼=
(Z/8Z)× ∼= V4. This group has three proper, nontrivial subgroups, H1 = ⟨ζ 7→ ζ3⟩, H2 = ⟨ζ 7→
ζ5⟩,H3 = ⟨ζ 7→ ζ7⟩, each of which is a cyclic group of order 2. Therefore, there are three quadratic
fields lying between Q and K: F1 = Fix H1 = Q(ζ + ζ3) = Q(

√
−2), F2 = Fix H2 = Q(i), and

F3 = Fix H3 = Q(ζ + ζ7) = Q(
√
2). The first and third fixed fields can be obtained via a sum

over the orbit, while the second needs other means (like taking a product over the orbit instead).

(b) (15 points) Let L be the splitting field of x8 − 1 over F3. Compute the Galois group Gal(L/F3)
up to isomorphism (no need for specific elements), and use the Galois correspondence to compute
and draw the lattice of intermediate fields F3 ⊆ F ⊆ L.

The splitting field for f(x) = x8 − 1 over F3 is the same as the splitting field of x9 − x, which by
Dummit and Foote Proposition 14.15 is the finite field F9. The Galois group Gal(F9/F3) is the
cyclic group of order 2 since the degree of the extension is 2. This group has no proper nontrivial
subgroups, so there are no fields strictly between F3 and F9 (which also follows from the tower
law). Thus, the intermediate field lattice contains just F3 and F9.

5. (30 points) Please complete THREE of the following problems, some of which are on the following
page. If you have work on more than three problems, you must CLEARLY specify which three
problems you would like graded; otherwise, the first three will be graded

I would like the following three parts of this problem graded:

(a) (10 points) Prove that every α ∈ Fpn \ Fp satisfies the equation

αpn−3 + αpn−4 + · · ·+ α+ 1 = −α−1.
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Since α ∈ Fpn , which is the set of roots of xp
n − x (see Dummit and Foote, p.549-550), α is a

root of that polynomial. Since α /∈ Fp, α ̸= 0, 1, so we can divide by x(x − 1), and thus α is a
root of xp

n−2 + xp
n−3 + · · ·+ x+ 1. Plugging in α, moving the 1 to the other side, and dividing

by α gives the result.

(b) (10 points) Let f(x) = x3 + x2 + 1 ∈ Q[x]. Let θ be a root of f(x) in some extension field.
Determine (1 + θ)−1 in Q(θ) as a polynomial in θ.

First, f is irreducible since it is degree 3 and has no roots in F2. This means that one obtains
a well-defined solution to this equation, but showing irreducibility isn’t explicitly necessary for
the problem.

We have θ3 + θ2 + 1 = 0, so if (1 + θ)−1 = aθ2 + bθ + c, then

1 = (1 + θ)(aθ2 + bθ + c)

= aθ3 + (a+ b)θ2 + (b+ c)θ + c

= a(−θ2 − 1) + (a+ b)θ2 + (b+ c)θ + c

= bθ2 + (b+ c)θ + c− a.

Since 1, θ, θ2 form a basis for Q(θ)/Q, we must have b = 0, b + c = 0, c − a = 1, and this yields
a = 0, b = 0, c = −1, so (1 + θ)−1 = −θ2.

Alternate solution: we can dispense with the annoying algebra by noting that θ3 + θ2 + 1 =
0 =⇒ θ2(θ + 1) + 1 = 0 =⇒ 1 = −θ2(θ + 1) =⇒ (θ + 1)−1 = −θ2.

(c) (10 points) Let R be a PID. Prove that R is Noetherian. (That is, R doesn’t have an infinite
strictly ascending chain of ideals I1 ⊊ I2 ⊊ · · · ).

There are multiple ways to prove this.

(i) Take an infinite weakly ascending chain of ideals I1 ⊆ I2 ⊆ · · · . Then I := ∪iIi is an ideal
containing every Ii. Since R is a PID, I = (d) for some d ∈ R; d ∈ Ik for some k, so choose k
minimal such that d ∈ Ik. Then I = (d) ⊆ Ik ⊆ I, so Ik = I, and this chain only has finitely
many strict increases.

(ii) Choose a fixed ideal I = (r) in R. Since PIDs are UFD, we can write r = p1p2 · · · pn where
p1, . . . , pn are irreducibles in R, and this factorization is unique up to order and units. Thus,
I ⊆ (d) if and only if d|r, which happens if and only if d can be expressed as d = upi1 · · · pik
where 1 ≤ i1 < i2 < · · · ik ≤ n, and u is a unit. There are at most 2n such choices up to a choice
of u, so I is contained in finitely many ideals, and thus cannot be part of an infinite ascending
chain.

(iii) In Lecture 4, we gave essentially the proof in (i) while proving that all PIDs are UFDs.
Citing this with enough specificity is acceptable.

(d) (10 points) Let K/Q be a Galois extension with abelian Galois group, and where [K : Q] is a
power of 2. Prove that every α ∈ K is constructible

Suppose that [K : Q] = 2n, and induct on n. The Galois group G := Gal(K/Q) is abelian of
order 2n, so has a chain of subgroups G = Gn > Gn−1 > · · · > G1 > G0 = 1 with |Gi+1 : Gi| = 2
for all i. By the Galois correspondence, taking the fixed fields of this chain gives a chain of field
extensions Q = K0 ⊆ K1 ⊆ · · · ⊆ Kn = K with [Ki+1 : Ki] = 2 for all i. Since every degree 2
extension is quadratic, this means every α ∈ K is constructible since Q(α) ⊆ K.

[In fact, this proof works when G is any 2-group, since (some form of) the Sylow Theorems
imply that G has the necessary chain of subgroups. However, if the extension is not Galois at
all, the proof fails, and indeed there are some extensions of degree a power of 2 that are not
constructible.]
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(e) (10 points) Let f(x), g(x) ∈ Q[x] with deg f = 3, deg g = 4. Let K be the splitting field of the
product fg (i.e. the composite of the splitting fields of f and g). Prove that every element of
Gal(K/Q) has order ≤ 12.

Note that all splitting fields over Q are Galois extensions. Let K1 be the splitting field of f and
K2 be the splitting field of g. Then, K = K1K2, so by Dummit and Foote Proposition 14.21,
Gal(K/Q) is a subgroup of Gal(K1/Q) ×Gal(K2/Q). The first group is a subgroup of S3, and
every element has order ≤ 3. The second group is a subgroup of S4, and every element has order
≤ 4. The order of (σ1, σ2) in the direct product is lcm(|σ1|, |σ2|), which therefore is ≤ 12.

(f) (10 points) Let V be an irreducible nonempty variety in C1. Prove that either V = C1 or V is a
point.

Let I = I(V ), which is an ideal in C[x], and note that we also have V = V (I). From Lecture 37,
since V is irreducible, I must be prime. If I = (0), then V = C1, so assume henceforth that I is
a nonzero prime ideal.

Since C is a field, C[x] is a Euclidean domain (hence a PID), and so all nonzero prime ideals are
maximal (Lecture 3). By the Weak Nullstellensatz (Lecture 38), whenever I is a maximal ideal,
V (I) is a point, and putting all this together, we see that V must be a point.


