
Math 418, Spring 2024 – Practice Problems for Final
Exam

8.2.2 Prove that any two nonzero elements of a P.I.D. have a least common multiple

Solution. Let I be the set of common multiples of a and b, and note that this forms
an ideal, which is nonempty since ab ∈ I. I is principal, I = (m), so m is a common
multiple of a and b of which every other common multiple is in turn a multiple i.e.
m = lcm(a, b).

9.4.11 Prove that x2 + y2 − 1 is irreducible in Q[x, y].

Solution. If x2+y2−1 is reducible, it is the product of two linear factors f = ax+by+c
and g = rx+sy+ t. We have x2+y2−1 = arx2+bsy2+(as+br)xy+(at+cr)x+(bt+
cs)y + ct, so ar = 1, bs = 1, ct = −1, as = −br, at = −cr. The first three equations
show that none of a, b, c, r, s, t can be 0, and the first, second, and fourth equations say
that ab−1 = −a−1b, which is impossible. [Note that since Q[x, y] is a UFD, this means
that (x2 + y2 − 1) is a prime ideal.]

13.2.15 A field F is said to be formally real if −1 is not expressible as a sum of squares in
F . Let F be a formally real field, let f(x) ∈ F [x] be an irreducible polynomial of odd
degree and let α be a root of f(x). Prove that F (α) is also formally real.

Solution. Suppose otherwise, and a counterexample α such that the degree of α over
F is the minimum possible. Then −1 = β2

1 + · · ·+β2
m for some choice of βi ∈ F (α), Let

the coset pi(x)+(f(x)) be the image of βi under the (inverse of the) isomorphism given
in Theorem 6, and we choose the representatives pi to have deg pi < deg f (otherwise,
divide with remainder). Then we have

−1 + (f) = p21 + · · ·+ p2m,

where we have collected copies of the ideal (f). Pulling this back to the polynomial
ring F [x], we see that

−1 + f(x)g(x) = p21 + · · ·+ p2m (1)

for some polynomial g ∈ F [x]. Since the degree of the right side of (1) is even and less
that 2 deg f , so must be the degree of the left side, so deg g is odd and less than deg f .

Now, g may not be irreducible, but at least one of its irreducible factors must have odd
degree. Let β be a root of such a factor h(x); then β has odd degree over F . Under
the maps F [x] → F [x]/(h) → F (β), (1) becomes

−1 = γ2
1 + · · · γ2

m
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for elements γi ∈ F (β). This means that F (β) is also not formally real, and since
deg β < degα, this contradicts the minimality of α.

13.5.8 Prove that f(x)p = f(xp) for any polynomial f(x) ∈ Fp[x].

Solution. Recall the Frobenius endomorphism a 7→ ap. Since this is an endomorphism,
we have (a+ b)p = ap+ bp in Fp. Therefore, if f(x) = anx

n+an−1x
n−1+ · · ·+a1x+a0,

f(x)p = (anx
n + an−1x

n−1 + · · ·+ a1x+ a0)
p

= (anx
n)p + · · ·+ (a1x)

p + ap0
= anx

p + · · ·+ a1x
p + a0

= f(xp).

14.1.6 Let k be a field. Show that the automorphisms of k[t] that fix k are precisely the maps
ϕ(f(t)) = f(at+ b), for a, b ∈ k, a ̸= 0

Solution. First let a, b ∈ k, a ̸= 0, and let ϕ(f(t)) = f(at+ b). ϕ is a homomorphism
since (f+g)(at+b) = f(at+b)+g(at+b), fg(at+b) = f(at+b)g(at+b) (all evaluation
maps are homomorphisms). ϕ is an isomorphism since its inverse is f(t) 7→ f((t−b)/a)
and a ̸= 0.

Conversely, let ϕ be any automorphism of k[t] fixing k. ϕ is determined by the value
ϕ(t) = f(t) (this is the action on the element t ∈ k[t], which is sent to another
polynomial, f(t) ∈ k[t]). Let g(t) = ϕ−1(t). Then since ϕ is a homomorphism, we have

t = ϕ(g(t)) = g(ϕ(t)) = g(f(t)),

so since t is degree on, f and g must be degree one also.

14.2.23 Let K be a Galois extension of F with cyclic Galois group of order n generated by σ.
Suppose α ∈ K has NK/F (α) = 1. Prove that α is of the form α = β

σβ
for some nonzero

β ∈ K.

Solution. As in the hint, choose θ ∈ K and let

β = θ + ασ(θ) + ασ(α)σ2(θ) + · · ·+ ασ(α) · · · σn−2(α)σn−1(θ).

Then,

σ(β) = σ(θ) + σ(α)σ2(θ) + σ(α)σ2(α)σ3(θ) + · · ·+ σ(α)σ2(α) · · ·σn−1(α)θ,

so
ασ(β) = ασ(θ) + ασ(α)σ2(θ) + ασ(α)σ2(α)σ3(θ) + · · ·+ θ = β,

noting that the product of all the Galois conjugates of α is NK/F (α) = 1.

This means that α = β
σ(β)

as long as β ̸= 0. By the linear independence of characters,

1, σ, σ2, . . . , σn−1 are linearly independent, so the character

χ := 1 + ασ + ασ(α)σ2 + · · ·+ ασ(α) · · ·σn−2(α)σn−1 ̸= 0.
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This means there exists some θ ∈ K such that β := χ(θ) ̸= 0, and the above shows
that α = β

σ(β)
.

15.2.8 Suppose the prime ideal P contains the ideal I. Prove that P contains the radical of I.

Solution. At least two ways to think about this. First, prime ideals are radical and
radicals are inclusion-preserving, so

√
I ⊆

√
P = P .

More directly, let a ∈
√
I. Then an ∈ I ⊆ P for some I, so a · a · · · a ∈ P . Since P is

a prime ideal, whenever a (finite) product lives in P , one of its factors must live in P .
In this case every factor is a, so a ∈ P .

CLO-8.3.1 (a) Show that I = (x2y− x3) is a homogeneous ideal in k[x, y] Solution. small error
corrected (in blue) Since I is principal, f ∈ I is of the form f = g(x2y − x3),
g ∈ k[x, y]. Let fi (resp. gi) be the degree-i homogeneous component of f (resp.
g), and then f0 = f1= f2 = 0 ∈ I, and for i ≥ 3, fi = gi−3(x

2y− x3) ∈ I. Thus, I
is a homogeneous ideal.

(b) Show that (f) ⊆ k[x0, . . . , xn] is a homogeneous ideal if and only if f is a ho-
mogeneous polynomial Solution. Similar argument to the first part. If f is
homogeneous i.e. f = fm for some m, then if g ∈ (f), g = fh, gi = 0 for all
i < m and for i ≥ m, gi = fhi−m ∈ I. Conversely, if f is not homogeneous, let
fm be the lowest nonzero homogeneous component of f . Since f is not homo-
geneous, m < degf , but every element g of (f) is a multiple of f and therefore
m < degf ≤ degg, so fm /∈ (f), and so (f) is not a homogeneous ideal.

G-C Galois correspondence for the following polynomials [Note: below, we’ll assume over
Q. Over a finite field, the extension degree of the splitting field is just the degree of the
largest irreducible factor, and the Galois group is the cyclic group of the appropriate
size. Try to think about how this works and how the roots of each irreducible factor
get permuted.]

(a) x9−1 Solution. Cyclotomic extension Q(ζ9)/Q). G = (Z/9Z)×, which is abelian
of order 6, so it must be C6 = ⟨σ⟩, where σ : ζ 7→ ζ2. Subgroups are 1, ⟨σ3⟩, ⟨σ2⟩,
and G. The middle two don’t contain each other. To compute the fixed fields,
try periods. Fix⟨σ3⟩ = Q(ζ9 + σ3ζ9) = Q(ζ9 + ζ−1

9 ). Check degrees: the minimal
polynomial of ζ9 over this field is x2− (ζ9+ ζ−1

9 )x+1, so the degree is correct. On
the other hand, for the other subgroup, ζ9+σ2ζ9+σ4ζ9) = ζ9+ ζ49 + ζ79 ∈ Fix⟨σ3⟩
but this doesn’t help because it’s 0: ζ9+ ζ49 + ζ79 = ζ9(1+ ζ3+ ζ23 ) = 0. So we want
to find any element of degree 2 in Q(ζ9) since there’s only one intermediate field
of this degree. One such element is ζ3 since σ2(ζ3) = σ2(ζ9)

3 = ζ39 = ζ3. (This
shouldn’t be surprising, since cube roots are 9th roots, so Q ⊆ Q(ζ3) ⊆ Q(ζ9).
Since G is abelian, every subgroup is normal, so every subextension is Galois.

(b) x6 − 2 Solution. A PREVIOUS VERSION OF THIS ANSWER HAD A MA-
JOR ERROR Irreducible by Eisenstein with prime 2. The splitting field is
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K = Q(ζ6,
6
√
2). Since ζ6 has degree 2 over Q and 6

√
2 has degree 6 over Q.

6 ≤ [K : Q]2 · 6. But Q( 6
√
2 ⊆ R and ζ6 /∈ R, so [K : Q] = 12. Let

σ( 6
√
2)ζ6

6
√
2, σ(ζ6) = ζ6 and τ( 6

√
2) = 6

√
2, τ(ζ6) = ζ−1

6 . Then σ has order 6 and
τ has order 2. We also have τσ( 6

√
2) = τ(ζ6

6
√
2) = ζ−1

6
6
√
2, τσ(ζ6) = τ(ζ6) = ζ−1

6

and σaτ( 6
√
2) = σa( 6

√
2) = ζa6

6
√
2, σaτ(ζ6) = σa(ζ−1

6 ) = ζ−1
6 , so we have τσ = σ5τ .

As a consequence of these relations, we have a group of order 12, which therefore
must be all of G. Precisely,

G = ⟨σ, τ⟩ = {σaτ b|0 ≤ a < 6, 0 ≤ b < 2}.

G is isomorphic to the dihedral group D12.

G has 16 subgroups, so we won’t consider them all (see here for all subgroups).
For any a, (σaτ)2 = σaτσaτ = σaσ−aττ = 1, so every element that is not in ⟨σ⟩
has order 2. This allows us to construct all the subgroups, by taking subgroups
of ⟨σ⟩ along with elements of G \ ⟨σ⟩.
Let’s do a couple of examples. Let H1 = ⟨σ2⟩. σ2( 6

√
2) = ζ26

6
√
2, so σ2(

√
2) =

ζ66
√
2 =

√
2, and we have Fix⟨σ2⟩ = Q(

√
2, ζ6). H1 is normal since τσ2τ−1 =

σ−2 ∈ H1, so Q(
√
2, ζ6) is Galois over Q.

As a second example, let H2 = ⟨στ, σ4τ⟩ = {1, στ, σ4τ, σ3}. From the previous
example, we might guess at the element 3

√
2; however, στ( 3

√
2) = ζ26

3
√
2. So

let’s try another cube root of 2: στ(ζ46
3
√
2) = σ(ζ26

3
√
2) = ζ46

3
√
2. In addition,

σ3(ζ46
3
√
2) = ζ46

3
√
2, and for good measure, σ4τ(ζ46

3
√
2) = σ4(ζ26

3
√
2) = ζ46

3
√
2. H2 is

not normal since τσττ−1 = σ5τ /∈ H2, so (as we knew), Q(ζ46 )/Q is not a Galois
extension.

(c) x3 + x + 1 Solution. Irreducible since no root modulo 2. Discriminant is D =
−4 ·12−27 ·12 = −31, which is not a square in Q, so G = S3. We don’t know the
roots directly unless you use Cardano’s formula, so call them α, β, γ. Without loss
of generality, ⟨(12)⟩ has fixed field Q(γ), ⟨(13)⟩ has fixed field Q(β), and ⟨(23)⟩
has fixed field Q(α). A3 = ⟨(123)⟩ has fixed field Q(

√
D) = Q(

√
−31). The trivial

subgroup fixes K and G fixes only Q. Of the proper nontrivial subgroups of G,
only A3 is normal, so Q(

√
−31)/Q is Galois, but Q(α), Q(β), and Q(γ) are not

Galois over Q.

(d) (x2 − x− 1)(x2 − 5) Solution. K is a composite extension of the splitting fields
of these two factors. Since they’re both degree 2, their splitting fields are either
identical or intersect in Q. By the quadratic formula, x2 − x− 1 has roots 1±

√
5

2
,

so its splitting field is actually Q(
√
5), the same as the splitting field of x2 − 5.

Therefore, K = Q(
√
5), G = C2, and there are no proper nontrivial subgroups or

intermediate fields.

(In general, for a composite extension like this one, you may need to use the
method in Problem 2 of Homework 9.)
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https://people.brandeis.edu/~igusa/Math131b/HW2ans.pdf

