
Math 418, Spring 2024 – Practice Problems 3

14.2.3 Determine the Galois group of (x2 − 2)(x2 − 3)(x2 − 5). Determine all the subfields of
the splitting field of this polynomial.

Solution. This is a degree 8 Galois extension with Galois group C2 × C2 × C2. Since
every non-identity element has order 2, we have 7 subgroups of order 2. We also have
7 subgroups of order 4 (the quotients of the 7 previous subgroups).

To find the intermediate fields, compute directly. For instance, the fixed field of
√
2 7→

−
√
2,
√
3 7→ −

√
3,
√
5 7→ −

√
5 is Q(

√
6,
√
10), and the fixed field of this element along

with
√
2 7→

√
2,
√
3 7→

√
3,
√
5 7→ −

√
5 is Q(

√
6).

14.2.10 Determine the Galois group of the splitting field over Q of x8 − 3.

Solution. The splitting field of x8−3 is Q(ζ8,
8
√
3) = Q(i,

√
2, 8
√
3), which has degree 32

over Q. The automorphisms are the 32 possible choices of i 7→ ±i,
√
2 7→ ±

√
2, 8
√
3 7→

ζa8
8
√
3. The subgroup sending i 7→ i,

√
2 7→

√
2 is isomorphic to C8 and the subgroup

fixing 8
√
3 is V4. The first subgroup is normal, and so the Galois group is C8 ⋊ V4.

14.2.13 Prove that if the Galois group of the splitting field of a cubic over Q is the cyclic group
of order 3 then all the roots of the cubic are real.

Solution. Real cubics must have at least one real root by the intermediate value
theorem. If the other two roots are nonreal, complex conjugation is an element of
order 2.

14.3.1 Factor x8 − x into irreducibles in Z[x] and in F2[x].

Solution. Over Z, we have x8 − x = x(x7 − 1) = x(x − 1)(x6 + x5 + x4 + x3 + x2 +
x + 1), since xn − 1 =

∏
d|n Φd(x). Over F2, x

8 − x is the product of all irreducible

polynomials over F2 of degree 1 and 3. (This is Proposition 14.18 in Dummit & Foote.
Notice that the roots of every such polynomial live in F2j for some j ≤ 3, and those
fields are contained in F8, which consists of the roots of x8 − x). The factorization is
x(x+ 1)(x3 + x+ 1)(x3 + x2 + 1), and we can check that the degree is right.

14.4.4 Let f(x) ∈ F [x] be an irreducible polynomial of degree n over the field F , let L be the
splitting field of f(x) over F and let α be a root of f(x) in L. If K is any Galois
extension of F , show that the polynomial f(x) splits into a product of m irreducible
polynomials each of degree d over K, where d = [K(α) : K] = [(L ∩ K)(α) : L ∩ K]
and m = n/d = [F (α) ∩K : F ].

Solution. The factorization of f over K is the same as over L ∩ K since every
linear factor of f and hence every product of those factors lies in L[x]. Thus, the two
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definitions of d are the same. Let H be the subgroup of Gal(L/F ) corresponding to
the intermediate field L∩K. By our construction of minimal polynomials, we have for
any root α of f ,

mα,L∩K(x) =
∏

β∈Hα

(x− β).

Thus, the degrees of the irreducible factors of f(x) over L ∩K equal the sizes of the
H-orbits of the roots of f .

H is normal in G by the Fundamental Theorem, property 4, since K/F is Galois.
By Dummit & Foote Exercise 4.9a, since G acts transitively on the roots of f and
H is normal, the H-orbits must be the same size; thus all degrees are the same.
This degree must be the degree of the minimal polynomial of α over L ∩K, which is
[(L ∩K)(α) : L ∩K].

14.5.2 Determine the subfields of Q(ζ8) generated by the periods of ζ8 and in particular show
that not every subfield has such a period as primitive element.

Solution. Let ζ = ζ8 G := Gal(Q(ζ)/Q) ∼= (Z/8Z)×, which is isomorphic to the
Klein-4 group V4. The elements of G are σa : ζ 7→ ζa for a = 1, 3, 5, 7 The subgroups
and corresponding periods are:

G ↔ ζ + ζ3 + ζ5 + ζ7

⟨σ3⟩ ↔ ζ + ζ3

⟨σ5⟩ ↔ ζ + ζ5

⟨σ7⟩ ↔ ζ + ζ7

1 ↔ ζ

However, note that ζ + ζ5 = 0, so the fixed field of ⟨σ5⟩ is not simply Q(ζ + ζ5).
(Instead, it is Q(i)).

14.6.2a Determine the Galois groups of x3 − x2 − 4

Solution. This factors as (x − 2)(x2 + x + 2). The first factor is linear, so can be
ignored. The second factor is an irreducible quadratic, so its Galois group is S2 = C2.

14.6.3 Prove for any a, b ∈ Fpn that if f(x) = x3 + ax+ b is irreducible then −4a3 − 27b2 is a
square in Fpn

Solution. Note that −4a3 − 27b2 is the discriminant; it is a square if and only if the
Galois group G of f is a subgroup of A3. If f(x) is irreducible, then G is a transitive
subgroup of S3, namely S3 or A3. Galois group of finite field extensions are cyclic, so
it must be A3.
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14.7.3 Let F be a field of characteristic ̸= 2. State and prove a necessary and sufficient
condition on α, β ∈ F so that F (

√
α) = F (

√
β). Use this to determine whether

Q(
√
1−

√
2) = Q(i,

√
2)

Solution. If F (
√
α) = F (

√
β), then β ∈ F (α), so is of the form

√
β = c0 + c1

√
α.

Then β = c20 + c21α + 2c0c1
√
α. Since α, β ∈ F , so is

√
α unless c0 or c1 is 0. The

former means that β/α = c21 is a square in F , and the latter means that
√
β = c0 ∈ F .

Therefore, F (
√
α) = F (

√
β) iff α

β
is a square in F .

Note that
√
2 is in Q(

√
1−

√
2) = Q(i,

√
2). The latter field is Q(

√
2)(i), and the

former is Q(
√
2)(

√
1−

√
2), so they are the same field iff (1−

√
2)/(−1) is a square in

Q(
√
2). Take the norm of

√
2− 1: N(

√
2− 1) = 3, which is not a square; thus

√
2− 1

is not a square in Q(
√
2) and the fields are distinct.
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