Math 418, Spring 2024 - Practice Problems 2

13.2.6 Prove directly from the definitions that the field $F\left(a_{1}, \ldots, a_{n}\right)$ is the composite of the fields $F\left(a_{1}\right), F\left(a_{2}\right), \ldots, F\left(a_{n}\right)$.
Solution. $F\left(a_{1}, l\right.$ dots,$\left.a_{n}\right)$ is the smallest field containing F, a_{1}, \ldots, a_{n}. This must contain $F\left(a_{1}\right), \ldots, F\left(a_{n}\right)$, so it contains their composite. Conversely, any field containg all of $F\left(a_{1}\right), \ldots, F\left(a_{n}\right)$ contains F and a_{1}, \ldots, a_{n}, so it contains $F\left(a_{1}, \ldots, a_{n}\right)$, and the composite by definition is such a field.
13.3.1 Prove that it is impossible to construct the regular 9-gon.

Solution. Consider the triple angle formula for cosines: $\cos \theta=4 \cos ^{3}(\theta / 3)-3 \cos (\theta / 3)$. Substituting $\theta=\frac{2 \pi}{3}$, we see that $\cos \frac{2 \pi}{9}$ is a root of $4 x^{3}-3 x+\frac{1}{2}$, so $2 \cos \frac{2 \pi}{9}$ is a root of $x^{3}-3 x+1$. this is irreducible by the rational root theorem, so $\left[\mathbb{Q}\left(\cos \frac{2 \pi}{9}\right): \mathbb{Q}\right]=3$, which is not a power of 2 . Since the interior angle of a regular 9 -gon has angle $\pi-\frac{2 \pi}{9}$, the regular 9-gon is not constructible. (See Dummit and Foote, pp. 534 for more details on this argument).
13.4.4 Determine the splitting field and its degree over \mathbb{Q} for $f(x)=x^{6}-4$.

Solution. This is a difference of squares, so $f(x)=\left(x^{3}+2\right)\left(x^{3}-2\right)$. The roots of $x^{3}-2$ are $\sqrt[3]{2}, \zeta \sqrt[3]{2}, \zeta^{2} \sqrt[3]{2}$, where ζ is a primitive cube root of 1 and $\sqrt[3]{2}$ is the unique positive real cube root of 2 . The roots of $x^{3}-2$ are cube roots of -2 i.e. the negatives of the cube roots of 2 . Thus, the splitting field of $f(x)$ is just the splitting field of $x^{3}-2$ i.e. $\mathbb{Q}(\zeta, \sqrt[3]{2})$, and this has degree 6 .
13.5.2 Find all irreducible polynomials of degrees 1,2 and 4 over \mathbb{F}_{2} and prove that their product is $x^{16}-x$.
Solution. This is a simple (if tedious) check. I'll mention that it's an example of a more general phenomenon, which we'll cover soon.
13.5.4 Let $a>1$ be an integer. Prove for any positive integers n, d that d divides n if and only if $a^{d}-1$ divides $a^{n}-1$. Conclude in particular that $\mathbb{F}_{p^{d}} \subseteq \mathbb{F}_{p^{n}}$ if and only if d divides n.
Solution. The first statement follows by setting $x=a$ in Problem 13.5.3, which was a homework problem. The second follows from setting $a=p$: $p^{d}-1$ divides $p^{n}-1$ if an only if $d \mid n$. Therefore, applying 13.5.3 again, $x^{p^{d}-1}-1$ divides $x^{p^{n}-1}-1$ if and only if $d \mid n$. Multiplying by $x, x^{p^{d}}-x$ divides $x^{p^{n}}-x$ if and only if $d \mid n$. Now the result follows since $\mathbb{F}_{p^{m}}$ is the set of all roots of $x^{p^{m}}-x$ lying in a fixed algebraic closure $\overline{\mathbb{F}_{p}}$.
13.6.6 Prove that for n odd, $n>1$ that $\Phi_{2 n}(x)=\Phi_{n}(-x)$

Solution. The map $\zeta \mapsto-\zeta$ is a bijection between primitive roots of Φ_{n} and $\Phi_{2 n}$, and there are an even number of each (check these facts yourself). Therefore,

$$
\Phi_{n}(-x)=\prod_{\zeta \in \mu_{n}}(-x-\zeta)=(-1)^{\left|\mu_{n}\right|} \prod_{\zeta \in \mu_{n}}(x+\zeta)=\prod_{\zeta \in \mu_{n}}(x+\zeta)=\Phi_{2 n}(x) .
$$

13.6.10 Let ϕ denote the Frobenius map $\mathbb{F}_{p^{n}}$. Prove that ϕ gives an automorphism of order n

Solution. We've already proved ϕ is an automorphism, since $\mathbb{F}_{p^{n}}$ is a finite field. Now, $\phi^{n}(a)=a^{p^{n}}=a$ since the multiplicative group $\mathbb{F}_{p^{n}}^{\times}$has p^{n-1} elements. Therefore, the order of ϕ divides n. Conversely, if ϕ has order d then every element of $\mathbb{F}_{p^{n}}$ is a root of the polynomial $x^{p^{d}}-x$, and if $d<n$ this is more roots than the degree of the polynomial.
14.1.1 (a) Show that if the field K is generated over F by the elements a_{1}, \ldots, a_{n} then an automorphism a of K fixing F is uniquely determined by $\sigma\left(a_{1}\right), \ldots, \sigma\left(a_{n}\right)$. In particular, show that an automorphism fixes K if and only if it fixes a set of generators for K.
Solution. Let σ, σ^{\prime} be two elements of $\operatorname{Aut}(K / F)$ with the same images of a_{1}, \ldots, a_{n}. Let $E=\left\{b \in K \mid \sigma(b)=\sigma^{\prime}(b)\right\} \subseteq K$. Then E contains F and a_{n}, \ldots, a_{n}. However, E must be a field since if $b, c \in E, \sigma(b+c)=\sigma(b)+\sigma(c)=$ $\sigma^{\prime}(b)+\sigma^{\prime}(c)=\sigma^{\prime}(b+c)$, and similarly for multipication. Therefore, $E=K$ since K is the smallest field containing F, a_{1}, \ldots, a_{n}.
The second statement follows from the first.
(b) Let $G \leq G a l(K / F)$ be a subgroup of the Galois group of the extension K / F and suppose $\sigma_{1}, \ldots, \sigma_{k}$ are generators for G. Show that the subfield E of K containing F is fixed by G if and only if it is fixed by the generators $\sigma_{1}, \ldots, \sigma_{k}$.
Solution. This is similar to the above. If E is not fixed by $\sigma_{1}, \ldots, \sigma_{k}$, it certainly isn't fixed by all of G. On the other hand, the subset of $\operatorname{Gal}(K / F)$ fixing E must be a subgroup (proof: if $\sigma(b)=b, \sigma^{\prime}(b)=b$, then $\sigma \sigma^{\prime}(b)=b$, and similarly for inverse), so if E is fixed by $\sigma_{1}, \ldots, \sigma_{k}$, it is fixed by G.
14.1.9 Determine the fixed field of the automorphism $\phi: t \mapsto t+1$ of $k(t)$

Solution. One can show directly that this indeed determines a unique automorphism. Let $f(t)=p(t) / q(t)$, where $p, q \in k[t]$ are relatively prime, and p is monic. If $f(x) \in$ Fix (ϕ), then $f(t+1)=f(t)$, so $p(t+1) / q(t+1)=p(t) / q(t)$, so $p(t+1) q(t)=p(t) q(t+1)$. If $p(t+1) \neq p(t)$, then they have no common (nonunit) factor since they are monic of the same degree. But then $p(t)$ is coprime with both factors, $p(t+1)$ and $q(t)$ on the right side, which is a contradiction.

Therefore, $p(t)=p(t+1)$, and by a similar argument $q(t)=q(t+1)$. Therefore, $\operatorname{Fix}(\phi)$ is the set of functions $f(t)=p(t) / q(t)$, where $p, q \in k[t]$ are relatively prime,
p is monic, and $p(t)=p(t+1), q(t)=q(t+1)$. We only need to determine which polynomials have this property.
For any root α of f we have $0=f(\alpha)=f(\alpha+1)=f(\alpha+2)=\cdots$, so if char $k=0$, f has no root in any field i.e. $f(t) \in k$. If char $k=p$, then let $\lambda(t)=t(t+1) \cdots(t+$ $p-1) \in k[t]$. We have $\lambda(t)=\lambda(t+1)$, and any polynomial in $k[t]$ generated by λ and elements of k (e.g. $\left.\lambda^{2}+2 \lambda+5\right)$ also has this property. Conversely, let $f(t)=f(t+1)$, and let $f(0)=a$. Then $q(t)=f(t)-a$ has the same property, and $q(0)=0$, so $q(1)=q(2)=\cdots=q(p-1)=0$, and so $\lambda \mid q$. By induction, every polynomial fixed by ϕ is a multiple of λ plus a constant, and therefore the fixed field consists of rational functions where both numerator and denominator are generated by λ and k.
14.1.10 Let K be an extension of the field F. Let $\phi: K \rightarrow K^{\prime}$ be an isomorphism of K with a field K^{\prime} which maps F to the subfield F^{\prime} of K^{\prime}. Prove that the map $\sigma \mapsto \phi \sigma \phi^{-1}$ defines a group isomorphism $\operatorname{Aut}(K / F) \rightarrow \operatorname{Aut}\left(K^{\prime} / F\right)$.
Solution. If $\sigma \in \operatorname{Aut}(K / F)$, then we first need to show that $\sigma^{\prime}:=\phi \sigma \phi^{-1}$ is indeed an element of $\operatorname{Aut}\left(K^{\prime} / F^{\prime}\right)$. Since σ is the composition of three isomorphisms, it is itself an isomorphism, hence in $\operatorname{Aut}\left(K^{\prime}\right)$. Since σ fixes F, if $a \in F^{\prime}$, then $\phi^{-1}(a) \in F$, so $\sigma^{\prime}(a)=\phi\left(\sigma\left(\phi^{-1}(a)\right)\right)=a$, and $\sigma^{\prime} \in \operatorname{Aut}\left(K^{\prime} / F^{\prime}\right)$.
Now, if $\sigma, \tau \in \operatorname{Aut}(K / F)$, then $\sigma \tau \mapsto \phi \sigma \tau \phi^{-1}=\phi \sigma \phi^{-1} \cdot \phi \tau \phi^{-1}$, so this map is a homomorphism. It is injective since if $\phi \sigma \phi^{-1}=\phi \tau \phi^{-1}, \sigma=\phi^{-1} \phi \sigma \phi^{-1} \phi=\phi^{-1} \phi \tau \phi^{-1} \phi=\tau$. Finally, for surjectivity, suppose that $\sigma^{\prime} \in \operatorname{Aut}\left(K^{\prime} / F^{\prime}\right)$. Then setting $\sigma:=\phi^{-1} \sigma^{\prime} \phi$, we have $\sigma \mapsto \phi \sigma \phi^{-1}=\phi \phi^{-1} \sigma^{\prime} \phi \phi^{-1}=\sigma^{\prime}$.

