Math 418, Spring 2024 – Practice Problems 1

8.1.10 Prove that the quotient ring $\mathbb{Z}[i]/I$ is finite for any nonzero ideal I of $\mathbb{Z}[i]$.

Solution. $\mathbb{Z}[i]$ is Euclidean, hence a PID, so $I = (\alpha)$ for some $\alpha \in \mathbb{Z}[i]$. If $\beta \in \mathbb{Z}[i]$, The Euclidean algorithm guarantees that $\beta = q\alpha + r$ for some $q, r \in \mathbb{Z}[i]$ where $N(r) < N(\alpha)$. But since $N(z) = |z|^2$ and $\mathbb{Z}[i]$ is discrete, there are only finitely many such points; hence finitely many cosets.

- 8.1.11 (See D & F for problem)
 - (a) Let *m* be an lcm of *a* and *b*. Then $m \in (a) \cap (b)$. Suppose $(n) \subseteq (a) \cap (b)$; then *n* is a common multiple of *a* and *b*, so by uniqueness of lcm, m|n. If also n|m, then (m) = (n), and if it doesn't, $(n) \subsetneq (m)$.
 - (b) Uniqueness follows from part a. For existence, since Euclidean domains are PIDs, the ideal (a) ∩ (b) (intersection of ideals is an ideal) is principal, say equaling (m). That m is an lcm of a and b can now be proved directly from the definition.
 - (c) Let d be a gcd of a and b and let m := ab/d. m is a multiple of a since $m = a \cdot \frac{b}{d}$, and similar for b. Conversely, if n is a least common multiple of a and b, then m = nk, so $n = \frac{m}{k} = a \cdot \frac{b}{dk}$ is a multiple of a and thus b is a multiple of dk. Similarly, a is a multiple of dk, so k is a unit.
- 8.2.4 Let I be nonprincipal, and let $a_1 \in I, b_1 \in I \setminus (a_1)$. Let a_2 be a gcd of a_1 that (by condition (i)) is in I. Since $b_1 \notin I$, it can't be an associate of a_1 , so $(a_1) \subsetneq (a_2)$. Let $b_2 \in I \setminus (a_2)$. Continue, getting a sequence a_1, a_2, \ldots with $a_{i+1}|a_i$ where no a_{i+1} is an associate of a_i , contradicting condition (ii).
- 8.3.8 (a) This is Homework 1, problem 6
 - (b) Prove that each ideal is maximal (see hint in D & F)
 - (c) Both factorizations expand to $I_2^2 I_3 I_3'$ (see Homework 2, Problem 5c)
- 9.3.4 (see lecture notes)
- 9.4.1b Determine whether $x^3 + x + 1$ is irreducible in $\mathbb{F}_3[x]$ Solution. Plug in all field elements to test for roots.
- 9.4.13 Prove that $x^3 + nx + 2$ is irreducible over \mathbb{Z} for all integers $n \neq 1, -3, -5$. Solution. Use the rational root theorem.

13.1.2 Show that $p(x) = x^3 - 2x - 2$ is irreducible over \mathbb{Q} and let θ be a root. Compute $(1+\theta)(1+\theta+\theta^2)$ and $\frac{1+\theta}{1+\theta+\theta^2}$ in $\mathbb{Q}(\theta)$.

Solution. Use the rational root theorem to show that p(x) doesn't have a root in \mathbb{Q} , and is therefore irreducible. Alternatively, use Eisenstein's criterion with the prime 2. Since θ is a root of p, $\theta^3 = 2\theta + 2$, so

$$(1+\theta)(1+\theta+\theta^2) = 1 + 2\theta + 2\theta^2 + \theta^3 = 3 + 4\theta + 2\theta^2.$$

For the final part, let $a + b\theta + c\theta^2 = \frac{1+\theta}{1+\theta+\theta^2}$. Then,

$$1 + \theta = (a + b\theta + c\theta^{2})(1 + \theta + \theta^{2})$$

= $a + (a + b)\theta + (a + b + c)\theta^{2} + (b + c)\theta^{3} + c\theta^{4}$
= $a + (a + b)\theta + (a + b + c)\theta^{2} + (b + c)(2\theta + 2) + c(2\theta^{2} + 2\theta)$
= $a + 2b + 2c + (a + 3b + 4c)\theta + (a + b + 3c)\theta^{2}$.

Solving this system of equations gives

$$\frac{1+\theta}{1+\theta+\theta^2} = \frac{1}{3}(1+2\theta-\theta^2).$$

- 13.1.6 Show that if α is a root of $p(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$ then $a_n \alpha$ is a root of the monic polynomial $q(x) = x^n + a_{n-1} x^{n-1} + a_n a_{n-2} x^{n-2} + \dots + a_n^{n-2} a_1 x + a_n^{n-1} a_0$. Solution. This follows from the fact that $q(a_n x) = a_n^{n-1} p(x)$.
- 13.2.2 (This is just a long computation without any tricks; you'll know you got the right answer if you got fields of the right sizes, and the multiplicative groups were cyclic)
- 13.2.12 Suppose the degree of the extension K/F is a prime p. Show that any subfield E of K containing F is either K or F.

Solution. This is a straightforward consequence of the tower law. First note that a degree one field extension is trivial, since the extension field is a dimension-one vector space over the base field, and thus the same field. Then we have p = [K : F] = [K : E][E : F], and since these are all integers one of [K : E] and [E : F] must be p, and the other must be 1.