
Math 418, Spring 2024 – Practice Problems 1

8.1.10 Prove that the quotient ring Z[i]/I is finite for any nonzero ideal I of Z[i].
Solution. Z[i] is Euclidean, hence a PID, so I = (α) for some α ∈ Z[i]. If β ∈ Z[i],
The Euclidean algorithm guarantees that β = qα + r for some q, r ∈ Z[i] where
N(r) < N(α). But since N(z) = |z|2 and Z[i] is discrete, there are only finitely many
such points; hence finitely many cosets.

8.1.11 (See D & F for problem)

(a) Let m be an lcm of a and b. Then m ∈ (a)∩ (b). Suppose (n) ⊆ (a)∩ (b); then n
is a common multiple of a and b, so by uniqueness of lcm, m|n. If also n|m, then
(m) = (n), and if it doesn’t, (n) ⊊ (m).

(b) Uniqueness follows from part a. For existence, since Euclidean domains are PIDs,
the ideal (a)∩ (b) (intersection of ideals is an ideal) is principal, say equaling (m).
That m is an lcm of a and b can now be proved directly from the definition.

(c) Let d be a gcd of a and b and let m := ab/d. m is a multiple of a since m = a · b
d
,

and similar for b. Conversely, if n is a least common multiple of a and b, then
m = nk, so n = m

k
= a · b

dk
is a multiple of a and thus b is a multiple of dk.

Similarly, a is a multiple of dk, so k is a unit.

8.2.4 Let I be nonprincipal, and let a1 ∈ I, b1 ∈ I \ (a1). Let a2 be a gcd of a1 that (by
condition (i)) is in I. Since b1 /∈ I, it can’t be an associate of a1, so (a1) ⊊ (a2). Let
b2 ∈ I \ (a2). Continue, getting a sequence a1, a2, . . . with ai+1|ai where no ai+1 is an
associate of ai, contradicting condition (ii).

8.3.8 (a) This is Homework 1, problem 6

(b) Prove that each ideal is maximal (see hint in D & F)

(c) Both factorizations expand to I22I3I
′
3 (see Homework 2, Problem 5c)

9.3.4 (see lecture notes)

9.4.1b Determine whether x3 + x+ 1 is irreducible in F3[x]

Solution. Plug in all field elements to test for roots.

9.4.13 Prove that x3 + nx+ 2 is irreducible over Z for all integers n ̸= 1,−3,−5.

Solution. Use the rational root theorem.
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13.1.2 Show that p(x) = x3 − 2x − 2 is irreducible over Q and let θ be a root. Compute
(1 + θ)(1 + θ + θ2) and 1+θ

1+θ+θ2
in Q(θ).

Solution. Use the rational root theorem to show that p(x) doesn’t have a root in Q,
and is therefore irreducible. Alternatively, use Eisenstein’s criterion with the prime 2.

Since θ is a root of p, θ3 = 2θ + 2, so

(1 + θ)(1 + θ + θ2) = 1 + 2θ + 2θ2 + θ3 = 3 + 4θ + 2θ2.

For the final part, let a+ bθ + cθ2 = 1+θ
1+θ+θ2

. Then,

1 + θ = (a+ bθ + cθ2)(1 + θ + θ2)

= a+ (a+ b)θ + (a+ b+ c)θ2 + (b+ c)θ3 + cθ4

= a+ (a+ b)θ + (a+ b+ c)θ2 + (b+ c)(2θ + 2) + c(2θ2 + 2θ)

= a+ 2b+ 2c+ (a+ 3b+ 4c)θ + (a+ b+ 3c)θ2.

Solving this system of equations gives

1 + θ

1 + θ + θ2
=

1

3
(1 + 2θ − θ2).

13.1.6 Show that if α is a root of p(x) = anx
n + an−1x

n−1 + · · ·+ a1x+ a0 then anα is a root
of the monic polynomial q(x) = xn + an−1x

n−1 + anan−2x
n−2 + · · ·+ an−2

n a1x+ an−1
n a0.

Solution. This follows from the fact that q(anx) = an−1
n p(x).

13.2.2 (This is just a long computation without any tricks; you’ll know you got the right
answer if you got fields of the right sizes, and the multiplicative groups were cyclic)

13.2.12 Suppose the degree of the extension K/F is a prime p. Show that any subfield E of K
containing F is either K or F .

Solution. This is a straightforward consequence of the tower law. First note that a
degree one field extension is trivial, since the extension field is a dimension-one vector
space over the base field, and thus the same field. Then we have p = [K : F ] = [K :
E][E : F ], and since these are all integers one of [K : E] and [E : F ] must be p, and
the other must be 1.
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