Solutions to Math 418 Midterm Exam 3 - Apr. 18, 2024

1. (30 points) (a) (15 points) Let K be the splitting field of $x^{8}-1$ over \mathbb{Q}. Compute the Galois group $\operatorname{Gal}(K / \mathbb{Q})$ up to isomorphism, and use the Galois correspondence to compute and draw the lattice of intermediate fields $\mathbb{Q} \subseteq E \subseteq K$.

Let ζ be a primitive 8 th root of 1. By Dummit and Foote Theorem 14.26, $\operatorname{Gal}(K / \mathbb{Q}) \cong$ $(\mathbb{Z} / 8 \mathbb{Z})^{\times} \cong V_{4}$. This group has three proper, nontrivial subgroups, $H_{1}=\left\langle\zeta \mapsto \zeta^{3}\right\rangle, H_{2}=\langle\zeta \mapsto$ $\left.\zeta^{5}\right\rangle, H_{3}=\left\langle\zeta \mapsto \zeta^{7}\right\rangle$, each of which is a cyclic group of order 2. Therefore, there are three quadratic fields lying between \mathbb{Q} and $K: F_{1}=$ Fix $H_{1}=\mathbb{Q}\left(\zeta+\zeta^{3}\right)=\mathbb{Q}(\sqrt{-2}), F_{2}=$ Fix $H_{2}=\mathbb{Q}(i)$, and $F_{3}=$ Fix $H_{3}=\mathbb{Q}\left(\zeta+\zeta^{7}\right)=\mathbb{Q}(\sqrt{2})$.
(b) (15 points) Let L be the splitting field of $x^{8}-1$ over \mathbb{F}_{3}. Compute the Galois group $\operatorname{Gal}\left(L / \mathbb{F}_{3}\right)$ up to isomorphism (no need for specific elements), and use the Galois correspondence to compute and draw the lattice of intermediate fields $\mathbb{F}_{3} \subseteq F \subseteq L$.

The splitting field for $f(x)=x^{8}-1$ over \mathbb{F}_{3} is the same as the splitting field of $x^{9}-x$, which by Dummit and Foote Proposition 14.15 is the finite field \mathbb{F}_{9}. The Galois group $\operatorname{Gal}\left(\mathbb{F}_{9} / \mathbb{F}_{3}\right)$ is the cyclic group of order 2 since the degree of the extension is 2 . This group has no proper nontrivial subgroups, so there are no fields strictly between \mathbb{F}_{3} and \mathbb{F}_{9} (which also follows from the tower law). Thus, the intermediate field lattice contains just \mathbb{F}_{3} and \mathbb{F}_{9}.
2. (15 points) Let $f(x)=x^{3}-3 x+1 \in \mathbb{Q}[x]$. Determine the Galois group for f over \mathbb{Q} up to isomorphism (no need for specific elements). [Hint: recall the discriminant of $x^{3}+p x+q$ is $D=-4 p^{3}-27 q^{2}$]
f is irreducible since its reduction mod 2 has no roots $\bar{f}(x)=x^{3}+x+1, \bar{f}(0)=\bar{f}(1)=1$ (or by the rational root theorem, since $f(1)=-1, f(-1)=-3$).
Since f is irreducible, its Galois group $\operatorname{Gal}(f)$ is a transitive subgroup of S_{3}, so $\operatorname{Gal}(f)=A_{3}$ or S_{3}. By the discriminant criterion, $\operatorname{Gal}(f) \subseteq A_{3} \Longleftrightarrow \sqrt{D} \in \mathbb{Q}$, so $\operatorname{Gal}(f)=A_{3}$ if $\sqrt{D} \in \mathbb{Q}$, and $\operatorname{Gal}(f)=S_{3}$ otherwise. Computing, we have $D=-4 p^{3}-27 q^{2}=81$, which is a square in \mathbb{Q}, so $\operatorname{Gal}(f)=A_{3}$.
3. (15 points) Prove that the polynomial $f(x)=x^{5}-4 x^{2}+2 \in \mathbb{Q}[x]$ is not solvable by radicals.

As in the proof in class, we want to show that f is irreducible and that it has precisely two nonreal roots. Then $|\operatorname{Gal}(f)|$ is a multiple of 5 , so it has a Sylow 5 -subgroup, and therefore has elements of order 5 , which in S_{5} must be 5 -cycles. In addition, complex conjugation (restricted to $S p_{\mathbb{Q}}(f)$) fixes the three real roots and swaps the other two i.e. it is a two-cycle. In S_{5}, any 5 -cycle and any 2 -cycle generate the whole group, so $\operatorname{Gal}(f)=S_{5}$. Since S_{5} is not solvable, by Galois' Solvability Theorem, $f(x)$ is not solvable by radicals.
$f(x)$ is irreducible by Eisenstein's criterion with $p=2$. Since the top-degree term is odd-degree with positive coefficient, $f(x)<0$ for $x \ll 0$ and $f(x)>0$ for $x \gg 0$. Since $f(-1)=1>0$ and $f(0)=-2<0$, the Intermediate Value Theorem guarantees that $f(x)$ has at least 3 real roots.
To see that $f(x)$ doesn't have more than 3 real roots, note that $f^{\prime}(x)=5 x^{4}-8 x=x\left(5 x^{3}-8\right)$. This has precisely 2 real roots, 0 and the unique real root of $5 x^{3}-8$ (which is a scaled, shifted version of x^{3}, and therefore has the same number of real roots). By the Mean Value Theorem, $f(x)$ can have more than $2+1=3$ real roots, so f satisfies the desired conditions and is not solvable by radicals.
4. (20 points) Miscellaneous problems.
(a) (10 points) Give an example of fields $F \subseteq K \subseteq L$ such that K / F and L / K are both Galois, but L / F is not (and prove your claims).

Let $F=\mathbb{Q}, K=\mathbb{Q}(\sqrt{2}), L=\mathbb{Q}(\sqrt[4]{2}) . \quad K / F$ is Galois because K is the splitting field for $x^{2}-2 \in \mathbb{Q}[x]$ over $\mathbb{Q} . L / K$ is Galois because L is the splitting field for $x^{2}-\sqrt{2} \in K[x]$ over K. However, L / \mathbb{Q} is not Galois. To see this, consider the polynomial $f(x)=x^{4}-2 \in \mathbb{Q}[x]$, which is irreducible by Eisenstein's criterion, and since $\sqrt[4]{2}$ is a root of f, f is the minimal polynomial of $\sqrt[4]{2}$ over $\mathbb{Q} . L$ contains two roots, $\pm \sqrt[4]{2}$ of f, but $L \subseteq \mathbb{R}$ and so L does not contain the other two roots, $\pm i \sqrt[4]{2}$. Any automorphism of L is determined by its action on $\sqrt[4]{2}$ since this is a primitive element for the extension. But this means that $\left|A u t_{L / \mathbb{Q}}\right|=2$ since any such automorphism must send $\sqrt[4]{2} \mapsto \pm \sqrt[4]{2}$. Since $[L: \mathbb{Q}]=4>2=\mid$ Aut $_{L / \mathbb{Q}} \mid$, the extension is not Galois.
(b) (10 points) Let K / \mathbb{Q} be a Galois extension with abelian Galois group such that $[K: \mathbb{Q}]$ is a power of 2 . Prove that every $\alpha \in K$ is constructible

Suppose that $[K: \mathbb{Q}]=2^{n}$, and induct on n. The Galois group $G:=\operatorname{Gal}(K / \mathbb{Q})$ is abelian of order 2^{n}, so has a chain of subgroups $G=G_{n}>G_{n-1}>\cdots>G_{1}>G_{0}=1$ with $\left|G_{i+1}: G_{i}\right|=2$ for all i. By the Galois correspondence, taking the fixed fields of this chain gives a chain of field extensions $\mathbb{Q}=K_{0} \subseteq K_{1} \subseteq \cdots \subseteq K_{n}=K$ with $\left[K_{i+1}: K_{i}\right]=2$ for all i. Since every degree 2 extension is quadratic, this means every $\alpha \in K$ is constructible since $\mathbb{Q}(\alpha) \subseteq K$.

