Solutions to Math 418 Midterm Exam 2 — Mar. 21, 2024

1. (12 points) True or False

For each of the following, determine if the statement is (always) true. Give a proof if it is, and give a counter-example if otherwise.

(a) (6 points) Recall that ζ_m denotes a primitive *m*th root of 1. If d|n with 1 < d < n, then $\mathbb{Q}(\zeta_d)$ is a proper subfield of $\mathbb{Q}(\zeta_n)$.

False, and a counterexample was given by a homework exercise, Dummit & Foote Problem 13.6.3. For instance, if d = 3, n = 6, then $\phi(3) = \phi(6) = 2$, so the cyclotomic polynomials Φ_3 and Φ_6 are both degree 2, and the cyclotomic fields $\mathbb{Q}(\zeta_3)$ and $\mathbb{Q}(\zeta_6)$ are both are degree 2 extensions of \mathbb{Q} . Therefore, we can't have $\mathbb{Q}(\zeta_3) \subsetneq \mathbb{Q}(\zeta_6)$ (It's not necessary for the proof, but we can see that in fact they are equal. $\zeta_3 = \zeta_6^2 \in \mathbb{Q}(\zeta_6)$, and $\zeta_6 = \zeta_3 + 1 \in \mathbb{Q}(\zeta_3)$.)

(b) (6 points) Let $f(x) \in \mathbb{Z}[x]$, and consider the canonical projection of $f(x) \mapsto \overline{f}(x) \in \mathbb{F}_p[x]$. If f is irreducible, then \overline{f} must be irreducible.

False. One example is $f(x) = x^2 + 2$. This is irreducible over \mathbb{Q} by Eisenstein's criterion, but over \mathbb{F}_2 , $\overline{f}(x) = x^2 = x \cdot x$ is reducible.

- 2. (25 points) Let $f(x) = x^3 23 \in \mathbb{Q}[x]$, and let K be the splitting field for f over \mathbb{Q} . You may take for granted that f is irreducible over \mathbb{Q} . (*Hint: don't be scared by the number 23, but do note that it is prime*)
 - (a) (10 points) Determine K and its degree over \mathbb{Q} .

The positive real cube root of 23, $\sqrt[3]{23}$, is a root of f, and the three roots are $\sqrt[3]{23}$, $\zeta_3 \sqrt[3]{23}$, $\zeta_3 \sqrt[3]{23}$, $\zeta_3 \sqrt[3]{23}$. Now, $K = \mathbb{Q}(\sqrt[3]{23}, \zeta_3)$ since the other two roots can be written in terms of $\sqrt[3]{23}$ and ζ_3 , and ζ_3 can be written as a quotient of two of the roots. By the Tower Law,

$$[K:\mathbb{Q}] = [K:\mathbb{Q}(\sqrt[3]{23})][\mathbb{Q}(\sqrt[3]{23}):\mathbb{Q}].$$

The latter factor is 3 since f is irreducible, while the former is 1 or 2 since $[\mathbb{Q}(\zeta_3) : \mathbb{Q}] = 2$, so $[K : \mathbb{Q}] = 3$ or 6. Since K contains a degree 2 element, ζ_3 , it must have even degree over \mathbb{Q} , so $[K : \mathbb{Q}] = 6$.

(b) (5 points) Prove that the field extension K/\mathbb{Q} is Galois.

f is separable because it has distinct roots (or alternatively, because it is irreducible over a characteristic zero field), so by Dummit & Foote Corollary 14.6 (splitting fields of separable polynomials are Galois), K/\mathbb{Q} is Galois.

(c) (10 points) Give a presentation of the Galois group $\operatorname{Gal}(K/\mathbb{Q})$. That is, give a set of automorphisms that generate $\operatorname{Gal}(K/\mathbb{Q})$, find the relations they satisfy, and prove that the group they generate really is the full Galois group.

Let $\sigma, \tau \in \operatorname{Gal}(K/\mathbb{Q})$ be defined by

$$\sigma:\begin{cases} \sqrt[3]{23}\mapsto\zeta_3\sqrt[3]{23},\\ \zeta_3\mapsto\zeta_3,\end{cases} \qquad \tau:\begin{cases} \sqrt[3]{23}\mapsto\sqrt[3]{23}\\ \zeta_3\mapsto\zeta_3^2.\end{cases}$$

It is easy to see that $\sigma^3 = \tau^2 = 1$, and so they generate a group of order at least 6. Since K/\mathbb{Q} is Galois, we know that $|\text{Gal}(K/\mathbb{Q})| = 6$, so $\text{Gal}(K/\mathbb{Q})$ is generated by σ and τ . All that remains is to find the relations between σ and τ , and a quick computation shows that

$$\sigma\tau = \tau\sigma^2 : \begin{cases} \sqrt[3]{23} \mapsto \zeta_3 \sqrt[3]{23} \\ \zeta_3 \mapsto \zeta_3^2, \end{cases}$$

(and note that this is equivalent to saying that $\sigma^2 \tau = \tau \sigma$) so $\operatorname{Gal}(K/\mathbb{Q}) = \langle \sigma, \tau | \sigma^3 = \tau^2 = 1, \sigma \tau = \tau \sigma^2 \rangle$, which equals the symmetric group S_3 (note: non-abelian).

- 3. (15 points) Recall that to construct an angle θ using straightedge and compass, it is equivalent to construct $\cos \theta$.
 - (a) (10 points) Use the triple angle formula

$$\cos\theta = 4\cos^3(\theta/3) - 3\cos(\theta/3)$$

to find the minimal (monic) polynomial over \mathbb{Q} for $\cos 80^{\circ}$ (and prove that this is indeed the minimal polynomial for $\cos 80^{\circ}$ over \mathbb{Q}).

Note that $\cos 240^\circ = -\cos 60^\circ = -\frac{1}{2}$, so by the triple angle formula, $\beta := \cos 80^\circ$ satisfies $-\frac{1}{2} = 4\beta^3 - 3\beta$, so β is a root of the monic polynomial $f(x) = x^3 - \frac{3}{4}x + \frac{1}{8}$.

We claim that f(x) is the minimal polynomial for β i.e. that it is irreducible. Since f is a degree three polynomial, it suffices to show that it doesn't have a rational root. We can equivalently show that $g(x) = 8f(x) = 8x^3 - 6x + 1$ doesn't have a rational root.

There are a few ways to show this.

1) By the rational root theorem, the only possible rational roots of g(x) are $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}$. We can just plug these in directly.

2) Same as above, but use this trick: if one of $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}$ is a root, its reciprocal (which is an integer) is a root of $x^3g(1/x) = x^3 - 6x^2 + 8$. But this polynomial has no integer roots, since it has no roots modulo 5, which can be checked more easily than plugging in the potential rational roots to g directly.

3) By Gauss' Lemma, since $g(x) \in \mathbb{Z}[x]$, if g(x) is irreducible over \mathbb{Z} , it is irreducible over \mathbb{Q} . However, g(x) can't have an integer root since g(a) is always odd if $a \in \mathbb{Z}$.

4) Similarly, reduce g(x) modulo p = 2. if $f(x) \in \mathbb{Z}[x]$ is irreducible over \mathbb{F}_p , then it is irreducible over \mathbb{Q} . This is a combination of Propositions 13.5 (Gauss' Lemma) and 13.12 in Dummit and Foote.

5) $g(x+1) = 8(x+1)^3 - 6(x+1) + 1 = 8x^3 + 24x^2 + 18x + 3$, which is irreducible by Eisenstein's criterion with the prime 3.

Therefore, g and f are both irreducible over \mathbb{Q} , and so f is the minimal polynomial for β .

(b) (5 points) Prove that $\cos 80^{\circ}$ is not constructible using straightedge and compass (which implies that the angle 80° isn't either).

As we have seen in class (or Dummit & Foote Proposition 13.23), if β is constructible, then $[\mathbb{Q}(\beta) : \mathbb{Q}]$ is a power of 2. However, by the previous part, $[\mathbb{Q}(\beta) : \mathbb{Q}] = 3$, which is a contradiction.

4. (20 points) Let F be a field, and consider the polynomial $f(x) = x^5 - 10x + 5 \in F[x]$ (note that f is indeed defined over any field F since $1 = 1_F \in F$). Whether f(x) is separable or not depends on F. Determine, with proof, precisely the fields F over which f(x) is separable.

[Hint: This may be a challenging problem. It turns out that whether f is separable or not depends entirely on the characteristic of F. You will get partial credit for stating our general separability criterion, and for proving that f is/isn't separable in certain characteristics.]

Recall that f is separable if and only if it has distinct roots over its splitting field, and that f has a multiple root precisely when gcd(f, Df) = 1. Now $Df = 5x^4 - 10$, and if char F = 5, Df = 0, so $gcd(f, Df) = f \neq 1$, and f is not separable.

So assume that char $F \neq 5$, and do division with remainder: $x^5 - 10x + 5 = \frac{1}{5}x(5x^4 - 10) + (-8x + 5)$. If g(x) is a factor of f(x) and Df(x), then it must also be a factor of 8x - 5 since 8x - 5 = 10x + 5 $-f(x) + \frac{1}{5}xDf(x)$. Conversely, if g(x) is a factor of 8x - 5 and Df(x), then it must also be a factor of f(x).

So our problem now reduces to computing when Df(x) and 8x-5 have a common (nontrivial) factor. (Note: we could have used any two of f, Df, 8x-5; this way is easiest). If char F = 2, 8x-5 = -5 is constant, so Df and 8x-5 won't have a common root. Otherwise, the only root of 8x-5 is $\frac{5}{8}$, so we need to see when Df(x) has $\frac{5}{8}$ as a root. Plugging it in gives

$$Df\left(\frac{5}{8}\right) = 5\left(\frac{5}{8}\right)^4 - 10 = \frac{5}{8^4}(5^4 - 2^{13}),$$

which equals 0 precisely when $0 = 2^{13} - 5^4 = 7567$. Factoring into primes, $7567 = 7 \cdot 23 \cdot 47$, so f won't be separable if the characteristic of F is one of these primes. Therefore, we conclude, f is separable if and only if char $F \neq 5, 7, 23, 47$. (Since you don't have a calculator, fine if you say f is separable if and only if char $F|2^{13} - 5^4$)