Solutions to Math 418 Midterm Exam 2 - Mar. 21, 2024

1. (12 points) True or False

For each of the following, determine if the statement is (always) true. Give a proof if it is, and give a counter-example if otherwise.
(a) (6 points) Recall that ζ_{m} denotes a primitive m th root of 1 . If $d \mid n$ with $1<d<n$, then $\mathbb{Q}\left(\zeta_{d}\right)$ is a proper subfield of $\mathbb{Q}\left(\zeta_{n}\right)$.

False, and a counterexample was given by a homework exercise, Dummit \& Foote Problem 13.6.3. For instance, if $d=3, n=6$, then $\phi(3)=\phi(6)=2$, so the cyclotomic polynomials Φ_{3} and Φ_{6} are both degree 2 , and the cyclotomic fields $\mathbb{Q}\left(\zeta_{3}\right)$ and $\mathbb{Q}\left(\zeta_{6}\right)$ are both are degree 2 extensions of \mathbb{Q}. Therefore, we can't have $\mathbb{Q}\left(\zeta_{3}\right) \subsetneq \mathbb{Q}\left(\zeta_{6}\right)$ (It's not necessary for the proof, but we can see that in fact they are equal. $\zeta_{3}=\zeta_{6}^{2} \in \mathbb{Q}\left(\zeta_{6}\right)$, and $\zeta_{6}=\zeta_{3}+1 \in \mathbb{Q}\left(\zeta_{3}\right)$.)
(b) (6 points) Let $f(x) \in \mathbb{Z}[x]$, and consider the canonical projection of $f(x) \mapsto \bar{f}(x) \in \mathbb{F}_{p}[x]$. If f is irreducible, then \bar{f} must be irreducible.
False. One example is $f(x)=x^{2}+2$. This is irreducible over \mathbb{Q} by Eisenstein's criterion, but over $\mathbb{F}_{2}, \bar{f}(x)=x^{2}=x \cdot x$ is reducible.
2. (25 points) Let $f(x)=x^{3}-23 \in \mathbb{Q}[x]$, and let K be the splitting field for f over \mathbb{Q}. You may take for granted that f is irreducible over \mathbb{Q}. (Hint: don't be scared by the number 23, but do note that it is prime)
(a) (10 points) Determine K and its degree over \mathbb{Q}.

The positive real cube root of $23, \sqrt[3]{23}$, is a root of f, and the three roots are $\sqrt[3]{23}, \zeta_{3} \sqrt[3]{23}, \zeta_{3}^{2} \sqrt[3]{23}$. Now, $K=\mathbb{Q}\left(\sqrt[3]{23}, \zeta_{3}\right)$ since the other two roots can be written in terms of $\sqrt[3]{23}$ and ζ_{3}, and ζ_{3} can be written as a quotient of two of the roots. By the Tower Law,

$$
[K: \mathbb{Q}]=[K: \mathbb{Q}(\sqrt[3]{23})][\mathbb{Q}(\sqrt[3]{23}): \mathbb{Q}]
$$

The latter factor is 3 since f is irreducible, while the former is 1 or 2 since $\left[\mathbb{Q}\left(\zeta_{3}\right): \mathbb{Q}\right]=2$, so $[K: \mathbb{Q}]=3$ or 6 . Since K contains a degree 2 element, ζ_{3}, it must have even degree over \mathbb{Q}, so $[K: \mathbb{Q}]=6$.
(b) (5 points) Prove that the field extension K / \mathbb{Q} is Galois.
f is separable because it has distinct roots (or alternatively, because it is irreducible over a characteristic zero field), so by Dummit \& Foote Corollary 14.6 (splitting fields of separable polynomials are Galois), K / \mathbb{Q} is Galois.
(c) (10 points) Give a presentation of the Galois $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$. That is, give a set of automorphisms that generate $\operatorname{Gal}(K / \mathbb{Q})$, find the relations they satisfy, and prove that the group they generate really is the full Galois group.
Let $\sigma, \tau \in \operatorname{Gal}(K / \mathbb{Q})$ be defined by

$$
\sigma:\left\{\begin{array}{l}
\sqrt[3]{23} \mapsto \zeta_{3} \sqrt[3]{23}, \\
\zeta_{3} \mapsto \zeta_{3},
\end{array} \quad \tau:\left\{\begin{array}{l}
\sqrt[3]{23} \mapsto \sqrt[3]{23}, \\
\zeta_{3} \mapsto \zeta_{3}^{2}
\end{array}\right.\right.
$$

It is easy to see that $\sigma^{3}=\tau^{2}=1$, and so they generate a group of order at least 6 . Since K / \mathbb{Q} is Galois, we know that $|\operatorname{Gal}(K / \mathbb{Q})|=6$, so $\operatorname{Gal}(K / \mathbb{Q})$ is generated by σ and τ. All that remains is to find the relations between σ and τ, and a quick computation shows that

$$
\sigma \tau=\tau \sigma^{2}:\left\{\begin{array}{l}
\sqrt[3]{23} \mapsto \zeta_{3} \sqrt[3]{23} \\
\zeta_{3} \mapsto \zeta_{3}^{2}
\end{array}\right.
$$

(and note that this is equivalent to saying that $\sigma^{2} \tau=\tau \sigma$) so $\operatorname{Gal}(K / \mathbb{Q})=\langle\sigma, \tau| \sigma^{3}=\tau^{2}=$ $\left.1, \sigma \tau=\tau \sigma^{2}\right\rangle$, which equals the symmetric group S_{3} (note: non-abelian).
3. (15 points) Recall that to construct an angle θ using straightedge and compass, it is equivalent to construct $\cos \theta$.
(a) (10 points) Use the triple angle formula

$$
\cos \theta=4 \cos ^{3}(\theta / 3)-3 \cos (\theta / 3)
$$

to find the minimal (monic) polynomial over \mathbb{Q} for $\cos 80^{\circ}$ (and prove that this is indeed the minimal polynomial for $\cos 80^{\circ}$ over \mathbb{Q}).
Note that $\cos 240^{\circ}=-\cos 60^{\circ}=-\frac{1}{2}$, so by the triple angle formula, $\beta:=\cos 80^{\circ}$ satisfies $-\frac{1}{2}=4 \beta^{3}-3 \beta$, so β is a root of the monic polynomial $f(x)=x^{3}-\frac{3}{4} x+\frac{1}{8}$.
We claim that $f(x)$ is the minimal polynomial for β i.e. that it is irreducible. Since f is a degree three polynomial, it suffices to show that it doesn't have a rational root. We can equivalently show that $g(x)=8 f(x)=8 x^{3}-6 x+1$ doesn't have a rational root.
There are a few ways to show this.

1) By the rational root theorem, the only possible rational roots of $g(x)$ are $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}$. We can just plug these in directly.
2) Same as above, but use this trick: if one of $\pm 1, \pm \frac{1}{2}, \pm \frac{1}{4}, \pm \frac{1}{8}$ is a root, its reciprocal (which is an integer) is a root of $x^{3} g(1 / x)=x^{3}-6 x^{2}+8$. But this polynomial has no integer roots, since it has no roots modulo 5 , which can be checked more easily than plugging in the potential rational roots to g directly.
3) By Gauss' Lemma, since $g(x) \in \mathbb{Z}[x]$, if $g(x)$ is irreducible over \mathbb{Z}, it is irreducible over \mathbb{Q}. However, $g(x)$ can't have an integer root since $g(a)$ is always odd if $a \in \mathbb{Z}$.
4) Similarly, reduce $g(x)$ modulo $p=2$. if $f(x) \in \mathbb{Z}[x]$ is irreducible over \mathbb{F}_{p}, then it is irreducible over \mathbb{Q}. This is a combination of Propositions 13.5 (Gauss' Lemma) and 13.12 in Dummit and Foote.
5) $g(x+1)=8(x+1)^{3}-6(x+1)+1=8 x^{3}+24 x^{2}+18 x+3$, which is irreducible by Eisenstein's criterion with the prime 3 .
Therefore, g and f are both irreducible over \mathbb{Q}, and so f is the minimal polynomial for β.
(b) (5 points) Prove that $\cos 80^{\circ}$ is not constructible using straightedge and compass (which implies that the angle 80° isn't either).
As we have seen in class (or Dummit \& Foote Proposition 13.23), if β is constructible, then $[\mathbb{Q}(\beta): \mathbb{Q}]$ is a power of 2 . However, by the previous part, $[\mathbb{Q}(\beta): \mathbb{Q}]=3$, which is a contradiction.
4. (20 points) Let F be a field, and consider the polynomial $f(x)=x^{5}-10 x+5 \in F[x]$ (note that f is indeed defined over any field F since $1=1_{F} \in F$). Whether $f(x)$ is separable or not depends on F. Determine, with proof, precisely the fields F over which $f(x)$ is separable.
[Hint: This may be a challenging problem. It turns out that whether f is separable or not depends entirely on the characteristic of F. You will get partial credit for stating our general separability criterion, and for proving that f is/isn't separable in certain characteristics.]

Recall that f is separable if and only if it has distinct roots over its splitting field, and that f has a multiple root precisely when $\operatorname{gcd}(f, D f)=1$. Now $D f=5 x^{4}-10$, and if char $F=5, D f=0$, so $\operatorname{gcd}(f, D f)=f \neq 1$, and f is not separable.
So assume that char $F \neq 5$, and do division with remainder: $x^{5}-10 x+5=\frac{1}{5} x\left(5 x^{4}-10\right)+(-8 x+5)$. If $g(x)$ is a factor of $f(x)$ and $D f(x)$, then it must also be a factor of $8 x-5$ since $8 x-5=$
$-f(x)+\frac{1}{5} x D f(x)$. Conversely, if $g(x)$ is a factor of $8 x-5$ and $D f(x)$, then it must also be a factor of $f(x)$.
So our problem now reduces to computing when $D f(x)$ and $8 x-5$ have a common (nontrivial) factor. (Note: we could have used any two of $f, D f, 8 x-5$; this way is easiest). If char $F=2,8 x-5=-5$ is constant, so $D f$ and $8 x-5$ won't have a common root. Otherwise, the only root of $8 x-5$ is $\frac{5}{8}$, so we need to see when $D f(x)$ has $\frac{5}{8}$ as a root. Plugging it in gives

$$
D f\left(\frac{5}{8}\right)=5\left(\frac{5}{8}\right)^{4}-10=\frac{5}{8^{4}}\left(5^{4}-2^{13}\right)
$$

which equals 0 precisely when $0=2^{13}-5^{4}=7567$. Factoring into primes, $7567=7 \cdot 23 \cdot 47$, so f won't be separable if the characteristic of F is one of these primes. Therefore, we conclude, f is separable if and only if char $F \neq 5,7,23,47$. (Since you don't have a calculator, fine if you say f is separable if and only if char $F \mid 2^{13}-5^{4}$)

