Solutions to Math 418 Midterm Exam 1 — Feb. 15, 2024

- 1. (20 points) Prove that each of the following polynomials is irreducible over the given ring.
 - (a) (5 points) $f(x) = x^5 10x + 5$ over \mathbb{Q} . This is an application of Eisenstein's criterion with the prime 5.
 - (b) (5 points) $g(x) = x^3 + 2024x^2 + 13x + 105$ over \mathbb{Q} .

Reducing modulo 2 gives $\overline{g(x)} = x^3 + x + 1 \in \mathbb{F}_2[x]$, and plugging in 0 and 1, we see that this has no root. Since it is cubic, it is irreducible over \mathbb{F}_2 ; thus over \mathbb{Q} .

(c) (5 points) $h(x) = x^2 + x + \sqrt{2}$ over $\mathbb{Z}[\sqrt{2}]$.

Since $\mathbb{Z}[\sqrt{2}]$ is a UFD, we apply the rational root theorem. Any root must divide $\sqrt{2}$, and pluggin in the divisors, $\pm 1, \pm \sqrt{2}$, shows that no such root exists. Since h has degree 2, it is irreducible.

(d) (5 points) $k(x) = x^2 - p$ over $\mathbb{Z}[i]$, where $p \in \mathbb{Z}$ is a (positive) prime number with $p \equiv 3 \mod 4$.

We have proven that p is irreducible over the Gaussian integers $\mathbb{Z}[i]$, so in particular it is not a square in $\mathbb{Z}[i]$. Therefore, k(x) doesn't have a root since this would be a square root of p, so since it is degree 2 means it's irreducible.

- 2. (20 points) Let $f(x) = x^5 10x + 5 \in \mathbb{Q}[x]$. By the previous problem, it is irreducible.
 - (a) (10 points) Let $\theta \in \mathbb{Q}$ be a root of f(x). Compute θ^{-1} (as a polynomial in θ) in the extension field $\mathbb{Q}(\theta)$.

Let $\theta^{-1} = a + b\theta + c\theta^2 + d\theta^3 + e\theta^4$. Then

$$1 = \theta \theta^{-1} = a\theta + b\theta^2 + c\theta^3 + d\theta^4 + e(10\theta - 5) = -5e + (a + 10e)\theta + b\theta^2 + c\theta^3 + d\theta^4,$$

and solving for the coefficients we obtain $\theta^{-1} = -\frac{1}{5}\theta^4 + 2$.

(b) (10 points) Let $\alpha, \beta \in \mathbb{C}$ be roots of f. (You may take for granted that such roots exist). Prove that $5 \leq [\mathbb{Q}(\alpha, \beta) : \mathbb{Q}] \leq 20$.

By the Tower Law, $[\mathbb{Q}(\alpha, \beta) : \mathbb{Q}] = [\mathbb{Q}(\alpha, \beta) : \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha) : \mathbb{Q}]$, and the second factor on the right is 5 since the minimal polynomial for α has degree 5. Now consider the minimal polynomial g(x)for β over $\mathbb{Q}(\alpha)$. Since $f(\beta) = 0$ g|f, but g can't equal f since the latter has a root $\alpha \in \mathbb{Q}(\alpha)$ and hence is reducible over $\mathbb{Q}(\alpha)$. Therefore, deg g < 5, so it ≤ 4 .

- 3. (20 points) Let R be a commutative ring with 1, and let $a, b \in R$ be nonzero. $m \in R$ is a *least common multiple* if a|m, b|m, and if a|m' and b|m', then m|m'.
 - (a) (10 points) Prove that if R is a UFD, then all nonzero $a, b \in R$ have a least common multiple.

Since R is a UFD, both a and b have factorizations into a finite number of irreducibles, unique up to associates. Choose a set of irreducibles p_1, \ldots, p_n containing all the irreducibles in either of these factorization (again up to units). Then

$$a = up_1^{e_1} \cdots p_n^{e_n}, \qquad b = vp_1^{f_1} \cdots p_n^{f_n},$$

where $e_i, f_i \in \mathbb{Z}_{\geq 0}$ and u, v are units. Let $g_i := \max(e_i, f_i)$, and $m := p_1^{g_1} \cdots p_n^{g_n}$. Then $a \mid m$ since

$$m = a \cdot u^{-1} u p_1^{g_1 - e_1} \cdots p_n^{g_n - e_n},$$

and similarly, b|m. If a|m' and b|m', then consider the exponent h_i of p_i in the irreducible factorization of m'. We must have $e_i \leq h_i$ since a|m' and $f_i \leq h_i$ since b|m'. Therefore, $h_i \geq \max(e_i, f_i) = g_i$ for all i, so m|m'.

(b) (10 points) Consider the ring $\mathbb{Z}[\sqrt{-5}]$. Prove that there exist nonzero elements a and b in this ring which do not have a least common multiple. (*Hint: recall from the homework that* 2, 3, $1 + \sqrt{-5}$, and $1 - \sqrt{-5}$ are all irreducible, and are pairwise nonassociates)

We show that a = 2 and $b = 1 + \sqrt{-5}$ do not have a least common multiple. Let $c = 2 + 2\sqrt{-5} = ab$ and $d = 6 = 3a = (1 - \sqrt{-5})b$.

Suppose a and b have a least common multiple m. Then m|c and m|d. Since the norm $N(x + y\sqrt{-5}) = x^2 + 5y^2$ is multiplicative, N(m)|N(c) = 24, and N(m)|N(d) = 36, so N(m)|12. We also have 4 = N(a)|N(m) and 6 = N(b)|N(m), so 12|N(m) Therefore, N(m) = 12; however, if $m = x + y\sqrt{-5}$, then $x^2 + 5y^2 = 12$. We must have y = 0 or y = 1, but neither 12 nor 7 is a square; hence this is impossible.

- 4. (20 points) Let p and q be distinct prime numbers (i.e. positive primes in \mathbb{Z}).
 - (a) (10 points) Prove that $\sqrt{p} \notin \mathbb{Q}(\sqrt{q})$.

If $p \in \mathbb{Q}(\sqrt{q})$, then $\sqrt{p} = a + b\sqrt{q}$ for some $a, b \in \mathbb{Q}$. Then $p = a^2 + qb^2 + 2ab\sqrt{q}$. Since $p \in \mathbb{Z}$, we must have ab = 0, so either $p = a^2$ or $p = qb^2$. Either of these factorizations contradicts the assumption that p is a prime distinct from q.

(b) (10 points) Prove that $[\mathbb{Q}(\sqrt{p}, \sqrt{q}) : \mathbb{Q}] = 4.$

By the Tower Law,

$$[\mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}] = [\mathbb{Q}(\sqrt{p},\sqrt{q}):\mathbb{Q}(\sqrt{p})][\mathbb{Q}(\sqrt{p}):\mathbb{Q}].$$

The minimal polynomial for \sqrt{p} over \mathbb{Q} is $x^2 - p$, irreducible over \mathbb{Q} by Eisenstein, so $[\mathbb{Q}(\sqrt{p}) : \mathbb{Q}] = 2$. Now, \sqrt{q} is a root of the degree-2 polynomial $x^2 - q \in \mathbb{Q}[x] \subseteq \mathbb{Q}(\sqrt{p})[x]$, so $[\mathbb{Q}(\sqrt{p},\sqrt{q}) : \mathbb{Q}(\sqrt{p})]$ is either 1 or 2. If it is 1, then $\mathbb{Q}(\sqrt{p},\sqrt{q}) = \mathbb{Q}(\sqrt{p})$, so $\sqrt{q} \in \mathbb{Q}(\sqrt{p})$, contradicting part (a).