Math 418, Spring 2024 - Homework 9

Due: Wednesday, April 24th, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Dummit and Foote \#14.6.2a Determine the Galois group of the polynomial $f(x)=$ $x^{3}-x^{2}-4$
2. Dummit and Foote $\# 14.6 .10$ Determine the Galois group of $x^{5}+x-1$. (Hint: see D $\&$ F Proposition 14.21
3. Let $p_{k}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}$ be the power sum symmetric function, and let $e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{1}<\ldots<i_{k}} x_{i_{1}} \cdots x_{i_{k}}$ be the elementary symmetric function. Let

$$
E(t)=\sum_{r=0}^{\infty} e_{r}\left(x_{1}, \ldots, x_{n}\right) t^{r}, \quad P(t)=\sum_{r=1}^{\infty} p_{r}\left(x_{1}, \ldots, x_{n}\right) t^{r-1}
$$

Prove that

$$
E(t)=\prod_{i=1}^{n}\left(1+x_{i} t\right), \quad P(t)=\sum_{i=1}^{n} \frac{x_{i}}{1-x_{i} t}=\sum_{i=1}^{n} \frac{d}{d t} \ln \frac{1}{1-x_{i} t} .
$$

4. Dummit and Foote $\# \mathbf{1 4 . 6 . 2 2}$ Let $f(x)$ be a monic polynomial of degree n with roots $\alpha_{1}, \ldots, \alpha_{n}$. Let e_{i} be the elementary symmetric function of degree i in the roots and define $e_{i}=0$ for $i>n$. Let $p_{i}=\alpha_{1}^{i}+\cdots+\alpha_{n}^{i}, i \geq 0$, be the sum of the i th powers of the roots of $f(x)$ Prove Newton's formulas:

$$
p_{n}-e_{1} p_{n-1}+e_{2} p_{n-2}+\cdots+(-1)^{n-1} e_{n-1} p_{1}+(-1)^{n} n e_{n}=0 .
$$

(Hint: use solution to previous problem)
5. Dummit and Foote \#14.7.1 Use Cardano's Formulas to solve the equation $f(x)=$ $x^{3}+x^{2}-2=0$. In particular show that the equation has the real root

$$
\frac{1}{3}(\sqrt[3]{26+15 \sqrt{3}}+\sqrt[3]{26-15 \sqrt{3}}-1)
$$

Show directly that the roots of this cubic are $1,-1 \pm i$. Explain this by proving that

$$
\sqrt[3]{26+15 \sqrt{3}}=2+\sqrt{3}, \quad \sqrt[3]{26-15 \sqrt{3}}=2-\sqrt{3}
$$

so that

$$
\sqrt[3]{26+15 \sqrt{3}}+\sqrt[3]{26-15 \sqrt{3}}=4
$$

6. Dummit and Foote $\# 14.7 .17$ Let $D \in \mathbb{Z}$ be a squarefree integer and let $a \in \mathbb{Q}$ be a nonzero rational number. Show that $\mathbb{Q}(\sqrt{a \sqrt{D}})$ cannot be a cyclic extension of degree 4 over \mathbb{Q} (i.e. $\operatorname{Gal}(\mathbb{Q}(\sqrt{a \sqrt{D}}) / \mathbb{Q})$ cannot be $\mathbb{Z} / 4 \mathbb{Z})$.
