Math 418, Spring 2024 - Homework 9

Due: Wednesday, April 24th, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Dummit and Foote \#14.6.2a Determine the Galois group of the polynomial $f(x)=$ $x^{3}-x^{2}-4$

Solution. $f(x)=(x-2)\left(x^{2}+x+2\right)$ is reducible, so the Galois group of f is the same as the Galois group of $g(x)=x^{2}+x+2$. Now, g is irreducible by Eisenstein's criterion with the prime 2 , which means that the splitting field of g and therefore g is a degree 2 extension of \mathbb{Q}, and therefore the Galois group is the only group of order $2, \mathbb{Z} / 2 \mathbb{Z}$.
For good measure, we compute the discriminant of g, which is $D=-7$. Since $\sqrt{D}=$ $\sqrt{-7} \notin \mathbb{Q}$, this means that the Galois group of g is not contained in $A_{2}=1$, so must equal $S_{2}=\mathbb{Z} / 2 \mathbb{Z}$.
2. Dummit and Foote $\# 14.6 .10$ Determine the Galois group of $x^{5}+x-1$. (Hint: see $D \& F$ Proposition 14.21
Solution. Note that f factors: $f(x)=\left(x^{2}-x+1\right)\left(x^{3}+x^{2}-1\right)$. Both of these factors are irreducible since neither has a root modulo 2. The Galois group for the quadratic factor $g(x)$ is Z_{2}, and the Galois group for the cubic factor $h(x)$ is S_{3}, since its discriminant, $D=-23$, is not a square in \mathbb{Q}.
Let K_{1} be the splitting field of g and let K_{2} be the splitting field of h. Then $K:=K_{1} K_{2}$ is the splitting field of f, and by $\mathrm{D} \& \mathrm{~F} \operatorname{Proposition~} 21, \operatorname{Gal}(K / \mathbb{Q})$ is the subgroup of $\operatorname{Gal}\left(K_{1} / \mathbb{Q}\right) \times \operatorname{Gal}\left(K_{2} / \mathbb{Q}\right)$ of pairs of elements which are equal on the intersection $K_{1} \cap K_{2}$.
We claim that this intersection is simply \mathbb{Q}, so that $\operatorname{Gal}(K / \mathbb{Q}) \cong \operatorname{Gal}\left(K_{1} / \mathbb{Q}\right) \times$ $\operatorname{Gal}\left(K_{2} / \mathbb{Q}\right)$. Suppose otherwise. Since $K_{1} \cap K_{2} \subseteq K_{1}$, and K_{1} has degree 2 over \mathbb{Q}, so must $K_{1} \cap K_{2}$, and so $K_{1}=K_{1} \cap K_{2}$ i.e. $K_{1} \subseteq K_{2}$. By the quadratic formula, $K_{1}=\mathbb{Q}(\sqrt{-3})$. By the Galois correspondence, $\operatorname{Gal}\left(K_{2} / K_{1}\right)=A_{3}$ (since it must be an index 2 subgroup of S_{3}). Therefore, the discriminant $D=-23$ of h must be a square in $\mathbb{Q}(\sqrt{-3})$. However, this is not the case since $\sqrt{-23}$ is not a \mathbb{Q}-linear combination of 1 and $\sqrt{-3}$.
3. Let $p_{k}\left(x_{1}, \ldots, x_{n}\right)=x_{1}^{k}+x_{2}^{k}+\cdots+x_{n}^{k}$ be the power sum symmetric function, and let $e_{k}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i_{1}<\ldots<i_{k}} x_{i_{1}} \cdots x_{i_{k}}$ be the elementary symmetric function. Let

$$
E(t)=\sum_{r=0}^{\infty} e_{r}\left(x_{1}, \ldots, x_{n}\right) t^{r}, \quad P(t)=\sum_{r=1}^{\infty} p_{r}\left(x_{1}, \ldots, x_{n}\right) t^{r-1}
$$

Prove that

$$
E(t)=\prod_{i=1}^{n}\left(1+x_{i} t\right), \quad P(t)=\sum_{i=1}^{n} \frac{x_{i}}{1-x_{i} t}=\sum_{i=1}^{n} \frac{d}{d t} \ln \frac{1}{1-x_{i} t} .
$$

Solution. (We won't worry about convergence here, but notice that if $x_{1}, \ldots, x_{n} \in \mathbb{C}$ since there are finitely many x_{i}, we may choose some $t \in \mathbb{C}, t \neq 0$ such that $\left|t x_{i}\right|<1$ for all i. Therefore, all the relevant series converge in an open neighborhood of $t=0$.) First, the elementary symmetric functions. We have

$$
\begin{aligned}
E(t) & =\sum_{r=0}^{\infty} e_{r}\left(x_{1}, \ldots, x_{n}\right) t^{r} \\
& =\sum_{r=0}^{\infty} \sum_{i_{1}<\ldots<i_{r}} x_{i_{1}} \cdots x_{i_{r}} t^{r} \\
& =\sum_{r=0}^{\infty} \sum_{i_{1}<\ldots<i_{r}}\left(x_{i_{1}} t\right) \cdots\left(x_{i_{r}} t\right) \\
& =\sum_{I \subseteq\{1,2, \ldots, n\}} \prod_{i \in I} x_{i} t .
\end{aligned}
$$

Expanding the product $\prod_{i=1}^{n}\left(1+x_{i} t\right)$ using the distributive law gives the same expression; the term $\prod_{i \in I} x_{i} t$ corresponds to choosing $x_{i} t$ from the factor $1+x_{i} t$ when $i \in I$, and choosing 1 when $i \notin I$.

Next, the power sum symmetric functions. We have

$$
P(t)=\sum_{r=1}^{\infty} p_{r}\left(x_{1}, \ldots, x_{n}\right) t^{r-1}=\sum_{r=1}^{\infty} \sum_{i=1}^{n} x_{i}^{r} t^{r-1}=\sum_{i=1}^{n} \sum_{r=1}^{\infty} x_{i}^{r} t^{r-1}=\sum_{i=1}^{n} \frac{x_{i}}{1-x_{i} t},
$$

summing the geometric series in the last step. For the second equality, using the chain rule,

$$
\frac{d}{d t} \ln \frac{1}{1-x_{i} t}=-\frac{d}{d t} \ln \left(1-x_{i} t\right)=\frac{x_{i}}{1-x_{i} t} .
$$

4. Dummit and Foote $\# \mathbf{1 4 . 6 . 2 2}$ Let $f(x)$ be a monic polynomial of degree n with roots $\alpha_{1}, \ldots, \alpha_{n}$. Let e_{i} be the elementary symmetric function of degree i in the roots and
define $e_{i}=0$ for $i>n$. Let $p_{i}=\alpha_{1}^{i}+\cdots+\alpha_{n}^{i}, i \geq 0$, be the sum of the i th powers of the roots of $f(x)$ Prove Newton's formulas:

$$
p_{n}-e_{1} p_{n-1}+e_{2} p_{n-2}+\cdots+(-1)^{n-1} e_{n-1} p_{1}+(-1)^{n} n e_{n}=0
$$

(Hint: use solution to previous problem)
Solution. Multiply the desired equation by $(-1)^{n}$ and move everything but the last term onto the opposite side of the equation. This becomes

$$
\begin{equation*}
n e_{n}=\sum_{r=1}^{n}(-1)^{r-1} p_{r} e_{n-r} \tag{1}
\end{equation*}
$$

The right side of (1) is the coefficient of t^{n-1} in $P(-t) E(t)$ since

$$
P(-t) E(t)=\sum_{r=0}^{\infty} p_{r}(-t)^{r-1} \sum_{m=0}^{\infty} e_{m} t^{m}=\sum_{r, m \geq 0}(-1)^{r-1} p_{r} e_{m} t^{r-1+m}=\sum_{n \geq 0}\left(\sum_{r \geq 0}(-1)^{r-1} p_{r} e_{n-r}\right) t^{n-1}
$$

On the other hand, using the previous problem, we have

$$
\begin{aligned}
\frac{d}{d t} \ln E(t) & =\frac{d}{d t} \ln \prod_{i=1}^{n}\left(1+x_{i} t\right) \\
& =\sum_{i=1}^{n} \frac{d}{d t} \ln \left(1+x_{i} t\right) \\
& =\sum_{i=1}^{n} \frac{d}{d t}\left(-\ln \frac{1}{1+x_{i} t}\right) \\
& =\sum_{i=1}^{n} \frac{d}{d(-t)}\left(\ln \frac{1}{1+x_{i} t}\right)=P(-t)
\end{aligned}
$$

Using the chain rule,

$$
P(-t)=\frac{d}{d t} \ln E(t)=\frac{E^{\prime}(t)}{E(t)}
$$

so

$$
P(-t) E(t)=E^{\prime}(t)=\sum_{n=0}^{\infty} n e_{n} t^{n-1}
$$

and the coefficient of t^{n-1} is the left side of (1)
5. Dummit and Foote \#14.7.1 Use Cardano's Formulas to solve the equation $f(x)=$ $x^{3}+x^{2}-2=0$. In particular show that the equation has the real root

$$
\frac{1}{3}(\sqrt[3]{26+15 \sqrt{3}}+\sqrt[3]{26-15 \sqrt{3}}-1)
$$

Show directly that the roots of this cubic are $1,-1 \pm i$. Explain this by proving that

$$
\sqrt[3]{26+15 \sqrt{3}}=2+\sqrt{3}, \quad \sqrt[3]{26-15 \sqrt{3}}=2-\sqrt{3}
$$

so that

$$
\sqrt[3]{26+15 \sqrt{3}}+\sqrt[3]{26-15 \sqrt{3}}=4
$$

Solution. f is associated to the depressed cubic $g(y)=y^{3}-\frac{1}{3} y-\frac{52}{27}$ by the parameter shift $x=y-\frac{1}{3}$, as explained on page 630 of Dummit and Foote. The discriminant of g is $D=-4(-1 / 3)^{3}-27(-52 / 27)^{2}=-100$. The quantities A and B given on page 632 of Dummit and Foote are
$A=\sqrt[3]{-\frac{27}{2} \frac{-52}{27}+\frac{3}{2} \sqrt{300}}=\sqrt[3]{26+15 \sqrt{3}}, \quad B=\sqrt[3]{-\frac{27}{2} \frac{-52}{27}-\frac{3}{2} \sqrt{300}}=\sqrt[3]{26-15 \sqrt{3}}$.
Since A and B are both real, the real root of g is given by

$$
\frac{A+B}{3}=\frac{1}{3}(\sqrt[3]{26+15 \sqrt{3}}+\sqrt[3]{26-15 \sqrt{3}})
$$

Because of the shift $x=y=\frac{1}{3}$, the corresponding root of f is

$$
\alpha:=\frac{A+B}{3}=\frac{1}{3}(\sqrt[3]{26+15 \sqrt{3}}+\sqrt[3]{26-15 \sqrt{3}}-1)
$$

Now, $f(1)=1^{3}+1^{2}-2=1+1+-2=0$ and $f(-1 \pm i)=(-1 \pm i)^{3}+(-1 \pm i)^{2}-2=$ $(-1 \pm 3 i+3 \mp i)+(1 \mp 2 i-1)-2=0$, so these are the roots of f, and since 1 is the only real root, we must have $\alpha=1$.
We have $(2 \pm \sqrt{3})^{3}=8 \pm 12 \sqrt{3}+18 \pm 3 \sqrt{3}=26 \pm 15 \sqrt{3}$, so

$$
\sqrt[3]{26 \pm 15 \sqrt{3}}=2 \pm \sqrt{3}
$$

Thus, we have

$$
\alpha=\frac{1}{3}(2+\sqrt{3}+2-\sqrt{3}-1)=\frac{1}{3}(4-1)=1,
$$

as desired.
6. Dummit and Foote $\# 14.7 .17$ Let $D \in \mathbb{Z}$ be a squarefree integer and let $a \in \mathbb{Q}$ be a nonzero rational number. Show that $\mathbb{Q}(\sqrt{a \sqrt{D}})$ cannot be a cyclic extension of degree 4 over \mathbb{Q} (i.e. $G a l(\mathbb{Q}(\sqrt{a \sqrt{D}}) / \mathbb{Q})$ cannot be $\mathbb{Z} / 4 \mathbb{Z})$.
Solution. $\alpha:=\sqrt{a \sqrt{D}}$ is a root of the polynomial $f(x)=x^{4}-a^{2} D$. If f is reducible, the degree of $\mathbb{Q}(\sqrt{a \sqrt{D}})$ over \mathbb{Q} is less than 4 , so assume that f is irreducible (as it is unless $a=0$ or $\sqrt{D} \in \mathbb{Q})$.

The roots of f are $\pm \alpha, \pm i \alpha$. Suppose $Q(\sqrt{a \sqrt{D}})$ is a cyclic extension of degree 4 over \mathbb{Q}; then this extension is Galois, and there exists a 4 -cycle $\sigma \in \operatorname{Gal}(f)$. This means that $\sigma(\alpha)= \pm i \alpha$, so applying σ again, $\sigma^{2}(\alpha)=\sigma(\pm i \alpha)= \pm \sigma(i)(\pm i \alpha)=\sigma(i) \cdot i \alpha$. Since $\sigma^{2}(\alpha)$ must equal $-\alpha$ if σ has order 4 , we must have $\sigma(i)=i$. But then i is fixed by $\operatorname{Gal}(f)$, which is a contradiction since $i \notin \mathbb{Q}$.

