Math 418, Spring 2024 - Homework 8

Due: Wednesday, April 10th, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Dummit and Foote $\# \mathbf{1 4 . 2 . 6}$: Let $K=\mathbb{Q}(\sqrt[8]{2}, i)$ and let $F_{1}=\mathbb{Q}(i), F_{2}=\mathbb{Q}(\sqrt{2}), F_{3}=$ $\mathbb{Q}(\sqrt{-2})$. Prove that $\operatorname{Gal}\left(K / F_{1}\right)=\mathbb{Z} / 8 \mathbb{Z}, \operatorname{Gal}\left(K / F_{2}\right)=D_{8}, \operatorname{Gal}\left(K / F_{3}\right)=Q_{8}$. (Hint: use the example in Section 14.2, and the diagrams on pages 580-1)
2. Dummit and Foote $\# 14.2 .7$: Determine all the subfields of the splitting field of $x^{8}-2$ which are Galois over \mathbb{Q}. (Hint: use the example in Section 14.2, and the diagrams on pages 580-1)
3. Dummit and Foote $\# \mathbf{1 4 . 2 . 1 4}$: Show that $\mathbb{Q}(\sqrt{2+\sqrt{2}})$ is a cyclic quartic field, i.e., is a Galois extension of degree 4 with cyclic Galois group.
4. Let K / F be a Galois extension of degree n with $G=G a l(K / F)$. For $\alpha \in K$, define the norm and trace of α by

$$
N_{K / F}(\alpha):=\prod_{\sigma \in G} \sigma(\alpha), \quad \text { and } \quad \operatorname{Tr}_{K / F}(\alpha)=\sum_{\sigma \in G} \sigma(\alpha) .
$$

Let $m_{\alpha, F}(x)=x^{d}+a_{d-1} x^{d-1}+\cdots+a_{1} x+a_{0}$.
(a) Show that $N_{K / F}(\alpha)=(-1)^{n} a_{0}^{n / d}$ and $\operatorname{Tr}_{K / F}(\alpha)=-\frac{n}{d} a_{d-1}$.
(b) Show that

$$
N_{K / F}(\alpha \beta)=N_{K / F}(\alpha) N_{K / F}(\beta) \quad \text { and } \quad \operatorname{Tr}_{K / F}(\alpha+\beta)=\operatorname{Tr}_{K / F}(\alpha)+\operatorname{Tr}_{K / F}(\beta)
$$

(c) Show that $N_{K / F}(a \alpha)=a^{n} N_{K / F}(\alpha)$ and $\operatorname{Tr}_{K / F}(a \alpha)=a \operatorname{Tr}_{K / F}(\alpha)$ for all $a \in F$, In particular show that $N_{K / F}(a)=a^{n}$ and $\operatorname{Tr}_{K / F}(a)=n a$ for all $a \in F$.
5. Dummit and Foote $\# 14.5 .3$: Determine the quadratic equation satisfied by the period $\alpha=\zeta_{5}+\zeta_{5}^{-1}$ of the 5th root of unity ζ_{5}. Determine the quadratic equation satisfied by ζ_{5} over $\mathbb{Q}(\alpha)$ and use this to explicitly solve for the 5 th root of unity.
6. Dummit and Foote \#14.5.7: Show that complex conjugation restricts to the automorphism $\sigma_{-1} \in \operatorname{Gal}\left(\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}\right)$ of the cyclotomic field of nth roots of unity. Show that the field $K^{+}=\mathbb{Q}\left(\zeta_{n}+\zeta_{n}^{-1}\right)$ is the subfield of real elements in $K=\mathbb{Q}\left(\zeta_{n}\right)$, called the maximal real subfield of K.
7. Dummit and Foote $\# \mathbf{1 4 . 5 . 1 0}$: Prove that $\mathbb{Q}(\sqrt[3]{2})$ is not a subfield of any cyclotomic field over \mathbb{Q}.

