Math 418, Spring 2024 - Homework 7

Due: Friday, March 29th, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Dummit and Foote \#13.3.3: Prove that an algebraically closed field must be infinite. Solution. Let F be a finite field. The polynomial $1+\prod_{a \in F}(x-a) \in F[x]$ has no roots in F, so F is not algebraically closed.
2. Dummit and Foote \#13.3.4: Construct the finite field of 16 elements and find a generator for the multiplicative group. How many generators are there?
Solution. Let $f(x)=x^{4}+x+1 \in \mathbb{F}_{2}[x]$. This is irreducible of degree 4 , so $F:=$ $\mathbb{F}_{2}[x] /(f(x))$ is a field of order 16 (which we have seen is unique up to isomorphism). Let θ be the image of x in this quotient; then $\theta^{4}=\theta+1$ and $\mathbb{F}_{2}[x] /(f(x))=\{a+b \theta+$ $\left.c \theta^{2}+d \theta^{3} \mid a, b, c, d \in \mathbb{F}_{2}\right\}$.
Now, $\left|F^{\times}\right|=16-1=15$, and since $\theta^{3} \neq 1$ and $\theta^{5}=\theta^{2}+\theta \neq 1, \theta$ must have order 15 ; therefore, it generates F^{\times}, which must therefore be cyclic. The number of generators for F^{\times}is $\phi(15)=8$.
3. Dummit and Foote \#13.3.8: Determine the splitting field of the polynomial $f(x)=$ $x^{p}-x-a$ over \mathbb{F}_{p} where $a \neq 0, a \in F_{p}$. Show explicitly that the Galois group is cyclic.
Solution. Let α be a root of f over some splitting field. Then if $k \in \mathbb{F}_{p}$,

$$
f(\alpha+k)=\alpha^{p}+k^{p}-\alpha-k-a=k^{p}-k=0,
$$

where we have used the Frobenius endomorphism and Fermat's Little Theorem. This produces p roots of f, so f is separable, with $\mathbb{F}_{p}(\alpha)$ its splitting field, and so the extension is Galois.

Lemma 0.1. Let $f \in F[x]$ be irreducible, and let α be a root of f. If $F(\alpha)$ is the splitting field for f over F, then $\operatorname{Aut}(F(\alpha) / F)$ consists of precisely one automorphism sending α to each root of f.

Proof. Each automorphism of $F(\alpha)$ fixing F depends only on the image of α, so we need only show that there exists an automorphism of $F(\alpha)$ fixing F and sending α to β. By Dummit \& Foote Theorem 13.6, there is a unique isomorphism $F(\alpha) \rightarrow F(\beta)$ fixing F and sending α to β, and since $F(\alpha)=F(\beta)$ this is an automorphism.

Using this lemma, there exists $\sigma \in \operatorname{Gal}\left(\mathbb{F}_{p}(\alpha) / \mathbb{F}_{p}\right)$ sending α to $\alpha+1$. The order of σ is a since $\mathbb{F}_{p}(\alpha)$ has characteristic p, so $\operatorname{Gal}\left(\mathbb{F}_{p}(\alpha) / \mathbb{F}_{p}\right)$ is cyclic, with σ as a generator.
4. Dummit and Foote $\# \mathbf{1 3 . 4 . 2}$: Find a primitive element for $K:=\mathbb{Q}(\sqrt{2}, \sqrt{3}, \sqrt{5})$ over \mathbb{Q}.
Solution. Since char $\mathbb{Q}=0$, the primitive element theorem says such an element α must exist. Now, K is a Galois extension since it is the splitting field of the separable polynomial $\left(x^{2}-2\right)\left(x^{2}-3\right)\left(x^{2}-5\right)$. Furthermore, the extension is degree 8 since $\mathbb{Q} \subsetneq \mathbb{Q}(\sqrt{2}) \subsetneq \mathbb{Q}(\sqrt{2}, \sqrt{3}) \subsetneq K$. Let $G=\operatorname{Gal}(K / \mathbb{Q})$; this must have fixed field \mathbb{Q} (proof: since K / \mathbb{Q} is Galois, $|G|=[K: \mathbb{Q}]=8$. If $E:=$ Fix $G \supsetneq \mathbb{Q}$, then $[K: E]<|G|=\operatorname{Gal}(G / E)$, a contradiction).
As we have shown in class, if $\alpha \in K$,

$$
m_{\mathbb{Q}}(\alpha)=\prod_{a \in G \alpha}(x-a)
$$

so if we can find a polynomial such that $|G \alpha|=8$, then $m_{\mathbb{Q}}(\alpha)$ will have degree 8 , so $[\mathbb{Q}(\alpha): \mathbb{Q}]=8$, and so $\mathbb{Q}(\alpha)=K$.
One such element is $\alpha=\sqrt{2}+\sqrt{3}+\sqrt{5}$. An element of G sends

$$
\sqrt{2} \mapsto \pm \sqrt{2}, \quad \sqrt{3} \mapsto \pm \sqrt{3}, \quad \sqrt{5} \mapsto \pm \sqrt{5}
$$

and all 8 choices are distinct automorphisms which send α to distinct elements.
5. Dummit and Foote \#13.4.3: Let F be a field contained in the ring $\operatorname{Mat}_{n}(\mathbb{Q})$ of $n \times n$ matrices over \mathbb{Q}. Here, $\mathbb{Q} \subseteq \operatorname{Mat}_{n}(\mathbb{Q})$ is identified with the scalar diagonal matrices by the inclusion

$$
q \mapsto q I=\left[\begin{array}{llll}
q & & & \\
& q & & \\
& & \ldots & \\
& & & q
\end{array}\right]
$$

Prove that $[F: \mathbb{Q}] \leq n$. (I do have a hint for this one, if you ask)
Solution. Since char $F=0$, the primitive element theorem tells us that $F=\mathbb{Q}(\alpha)$ for some element $\alpha \in F$. Let $f(x)$ be the characteristic polynomial for the matrix α. Then $\operatorname{deg} f=n$, and $f(\alpha)=0$ by the Cayley-Hamilton theorem. Therefore, $[F: \mathbb{Q}]=\operatorname{deg} \alpha \leq \operatorname{deg} f=n$.

