Math 418, Spring 2024 - Homework 6

Due: Wednesday, March 6th, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Dummit and Foote \#13.5.3: Prove that d divides n if and only if $x^{d}-1$ divides $x^{n}-1$. (Hint: if $n=q d+r$, then $\left.x^{n}-1=\left(x^{q d+r}-x^{r}\right)+\left(x^{r}-1\right)\right)$
Solution. Using the hint, if $n=q d+r$ with $0 \leq r<d$, then $x^{n}-1=\left(x^{q d+r}-x^{r}\right)+$ $x^{r}-1$. Unless $r=0, x^{d}-1$ can't divide $x^{r}-1$ since $r<d$, so the result follows since $x^{d}-1$ divides $x^{q d+r}-x^{r}=x^{r}\left(x^{d}-1\right)\left(x^{(q-1) d}+x^{(q-2) d}+\cdots+1\right)$.
(Alternatively, the roots of $x^{n}-1$ are the nth roots of 1 , while the roots of $x^{d}-1$ are the d th roots of 1 , so the latter divides the former if and only if nth roots are d th roots, so if and only if $d \mid n$.)
2. Dummit and Foote $\# \mathbf{1 3 . 5 . 6}$: Prove that $x^{p^{n}-1}-1=\prod_{\alpha \in \mathbb{F}_{p^{n}}^{\times}}(x-\alpha)$. Conclude that $\prod_{\alpha \in \mathbb{F}_{p^{n}}} \alpha=(-1)^{p^{n}}$ so the product of the nonzero elements of a finite field is +1 if $p=2$ and -1 if p is odd. For p odd and $n=1$ derive Wilson 's Theorem: $(p-1)!=-1$ ($\bmod p)$.

Solution. The degrees of both sides match up, so for the first part we only need to show that if $\alpha \in \mathbb{F}_{p}^{\times}$that $\alpha^{p^{n}-1}=1$. $\mathbb{F}_{p^{n}}^{\times}$is a group under multiplication with order $p^{n}-1$, so by Lagrange's Theorem the order of every element divides $p^{n}-1$, so $\alpha^{p^{n}-1}=1$ for all $\alpha \in \mathbb{F}_{p^{n}}$, and the first statement holds.

The statements in the second sentence follow from the specialization $x=0$. Finally, Wilson's Theorem is just a reinterpretation of the second sentence: up to a multiple of $p,(p-1)$! is the product of all nonzero elements of \mathbb{F}_{p}.
3. Dummit and Foote $\#$ 13.6.2: Let ζ_{n} be a primitive nth root of unity and let d be a divisor of n. Prove that ζ_{n}^{d} is a primitive (n / d) th root of unity.
Solution. ζ_{n}^{d} is an (n / d) th root of unity since $\left(\zeta_{n}^{d}\right)^{n / d}=\zeta_{n}^{n}=1$. Furthermore, if $m<n / d$ and $\left(\zeta_{n}^{d}\right)^{m}=1$, then $m d<n$ and $\zeta_{n}^{m d}=\left(\zeta_{n}^{d}\right)^{m}=1$, so the primitivity of ζ_{n} as an nth root implies the primitivity of ζ_{n}^{d} as an (n / d) th root.
4. Dummit and Foote \#13.6.3: Prove that if a field contains the nth roots of unity for n odd then it also contains the $2 n t h$ roots of unity.
Solution. Direct method: Let ζ_{n} be a primitive nth root of unity. Then $\left(-\zeta_{n}\right)^{2 n}=$ $(-1)^{2 n} \zeta^{2 n}=1$, so $-\zeta_{n}$ is a $2 n$-th root of unity. Conversely, if $\left(-\zeta_{n}\right)^{a}=1$, then either a is even and $\zeta_{n}^{a}=1$, in which case a is a multiple of $2 n$ or a is odd and $\zeta_{n}^{a}=-1$. But no power of ζ_{n} can equal -1 ; otherwise let $b \geq 1$ be minimal with $\zeta_{n}^{b}=-1$, and $\zeta_{n}^{2 b}$ must be a multiple of n, but since n is odd, this would mean that b is a multiple of n. Indirect method: The map

$$
a \mapsto \begin{cases}a, & \text { if } a \text { is odd } \\ a+n, & \text { if } a \text { is even }\end{cases}
$$

is a bijection between integers $1, \ldots, n$ that are coprime to n and integers $1, \ldots, 2 n$ that are coprime to $2 n$. This means that $\phi(n)=\phi(2 n)$, so the cyclotomic extensions $\mathbb{Q}\left(\zeta_{n}\right) / \mathbb{Q}$ and $\mathbb{Q}\left(\zeta_{2 n}\right) / \mathbb{Q}$ have the same degree. Since $\mathbb{Q}\left(\zeta_{n}\right) \subseteq \mathbb{Q}\left(\zeta_{2 n}\right)$, the fields must be equal.
5. Dummit and Foote \#13.6.7: Use the Mobius Inversion formula indicated in Section 14.3 to prove

$$
\Phi_{n}(x)=\prod_{d \mid n}\left(x^{d}-1\right)^{\mu(n / d)}
$$

Solution. Note that we don't need to know anything about the Mobius Inversion formula except the formula itself:

$$
\text { if } F(n)=\sum_{d \mid n} f(d), \quad \text { then } \quad f(n)=\sum_{d \mid n} \mu(d) F\left(\frac{n}{d}\right) .
$$

We use the formula $x^{n}-1=\prod_{d \mid n} \Phi_{d}(x)$; to turn multiplication into addition set $F(n):=\log \left(x^{n}-1\right)$ and $f(n):=\log \left(\Phi_{d}(x)\right)$. Plugging these into the Mobius Inversion formula produces

$$
\log \left(\Phi_{n}(x)\right)=\sum_{d^{\prime} \mid n} \mu\left(d^{\prime}\right) \log \left(x^{n / d^{\prime}}-1\right)
$$

so

$$
\Phi_{n}(x)=\prod_{d^{\prime} \mid n}\left(x^{n / d^{\prime}}-1\right)^{\mu\left(d^{\prime}\right)}
$$

and the substitution $d=n / d^{\prime}$ gives the desired formula.
6. Dummit and Foote $\# 14.1 .3$: Determine the fixed field of complex conjugation on \mathbb{C}.

Solution. If $z \in \mathbb{C}, z$ can be written uniquely as $z=a+b i$ with $a, b \in \mathbb{R}$. (You already know this from long ago, but it also follows from Dummit \& Foote Theorem 13.4 using the polynomial $x^{2}+1$). The complex comjugate $\bar{z}=a-b i$, and by uniqueness, that equals $a+b i$ precisely if $b=0$ i.e. $z \in \mathbb{R}$.
7. Dummit and Foote $\# 14.1 .5$: Determine the automorphisms of the extension $\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}(\sqrt{2})$ explicitly. (Hint: Use Dummit \& Foote Proposition 14.5)
Solution. By the Tower Law, this is a degree 2 field extension, so by Proposition 14.5 we have at most 2 automorphisms of $\mathbb{Q}(\sqrt[4]{2})$ fixing $\mathbb{Q}(\sqrt{2})$. The identity is such an automorphism, and for the other, we let $a \mapsto a$ for any $a \in \mathbb{Q}$ and let $\sqrt[4]{2} \mapsto-\sqrt[4]{2}$. (How do we guess this? The image of $\sqrt[4]{2}$ must be one of $\pm \sqrt[4]{2}, \pm i \sqrt[4]{2}$, and choosing one of the latter pair would give a map of order >2). The powers of $\sqrt[4]{2}$ give us a \mathbb{Q}-basis of $\mathbb{Q}(\sqrt[4]{2})$, so our automorphism is

$$
a+b \sqrt[4]{2}+c \sqrt{2}+d(\sqrt[4]{2})^{3} \mapsto a-b \sqrt[4]{2}+c \sqrt{2}-d(\sqrt[4]{2})^{3}
$$

We see this fixes $\sqrt{2}$, so it is indeed an element of $\operatorname{Aut}(\mathbb{Q}(\sqrt[4]{2}) / \mathbb{Q}(\sqrt{2}))$.

