Math 418, Spring 2024 - Homework 5

Due: Wednesday, February 28st, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Dummit and Foote \#13.4.1: Determine the splitting field and its degree over \mathbb{Q} for $f(x)=x^{4}-2$.
Solution. Let K be the desired splitting field. As usual, let $\sqrt[4]{2}$ be the positive real fourth root of 2 . Then, using polar coordinates, the roots for $f(x)$ are $e^{2 \pi i a / 4} \cdot \sqrt[4]{2}, 0 \leq$ $a<4$ i.e. $\pm \sqrt[4]{2}, \pm i \sqrt[4]{2}$. This means that $i=\frac{i \sqrt[4]{2}}{\sqrt[4]{2}} \in K$, and conversely, $i \sqrt[4]{2} \in \mathbb{Q}(\sqrt[4]{2}, i)$. Therefore, $K=\mathbb{Q}(\sqrt[4]{2}, i)$.

Using the tower law,

$$
[K: \mathbb{Q}]=[K: \mathbb{Q}(\sqrt[4]{2})][\mathbb{Q}(\sqrt[4]{2}): \mathbb{Q}] .
$$

The latter factor is 4 since $x^{4}-2$ is irreducible. The former factor is ≤ 2 since the minimal polynomial for i over \mathbb{Q} is $x^{2}+1$, so the minimal polynomial for i over $\mathbb{Q}(\sqrt[4]{2})$ must divide this. However, $i \notin \mathbb{Q}(\sqrt[4]{2})$ since $\mathbb{Q}(\sqrt[4]{2}) \subseteq \mathbb{R}$, so the degree must be 2 . Therefore, $[K: \mathbb{Q}]=8$.
2. Dummit and Foote \#13.4.2: Determine the splitting field and its degree over \mathbb{Q} for $f(x)=x^{4}+2$.
Solution. Let K be the desired splitting field. Surprisingly, $K=\mathbb{Q}(\sqrt[4]{2}, i)$, so the answer is the same as the previous problem.
Let ζ be a primitive 8 th root of unity (we could make the process go faster by using coordinates, but I want to emphasize that knowledge of the roots isn't always necessary). Then $\zeta \sqrt[8]{4}=\zeta \sqrt[4]{2}$ is a root of $x^{8}-4=\left(x^{4}+2\right)\left(x^{4}-2\right)$, but $\zeta^{4}=-1$ (since by primitivity it can't equal 1), so $\zeta \sqrt[4]{2}$ must be a root of $x^{4}+2$. Thus, the four roots of this polynomial are $\zeta \sqrt[4]{2}, a=1,3,5,7$ since $\zeta^{a}, a=1,3,5,7$ are the primitive 8 th roots of unity.
To show that $K=\mathbb{Q}(\sqrt[4]{2}, i)$, note that $\frac{\zeta^{3} \sqrt[4]{2}}{\zeta \sqrt[4]{2}}=\zeta^{2}= \pm i$, so $i \in K$, and $\sqrt{2}=$ $\pm i \cdot(\zeta \sqrt[4]{2})^{2} \in K$ as well. Also, $\left(\zeta+\zeta^{7}\right)^{4}=\zeta^{4}+4 \zeta^{10}+6 \zeta^{16}+4 \zeta^{22}+\zeta^{28}=4$, so

$$
\frac{1}{\sqrt{2}}\left(\zeta \sqrt[4]{2}+\zeta^{7} \sqrt[4]{2}\right)=\frac{\zeta}{\sqrt[4]{2}}+\frac{\zeta^{7}}{\sqrt[4]{2}}
$$

is a 4 th root of 2 . After multiplication by a power of ζ^{2}, we see that $\sqrt[4]{2} \in K$.
On the other hand, one can check directly that $\sqrt[4]{2}+i \sqrt[4]{2}$ is a primitive 8 th root of unity, and by multiplying by powers of $i, \mathbb{Q}(\sqrt[4]{2})$ contains all four primitive 8 th roots of unity, so $K=\mathbb{Q}(\sqrt[4]{2}, i)$.
3. Dummit and Foote \#13.4.3: Determine the splitting field and its degree over \mathbb{Q} for $f(x)=x^{4}+x^{2}+1$.
Solution. Let $g(x)=x^{2}+x+1$. Then $f(x)=g\left(x^{2}\right)$. Since $g(x)=\frac{x^{3}-1}{x-1}$, its roots are the nonreal cube roots of unity i.e. $e^{ \pm 2 \pi i / 3}$, so the roots of f are sixth roots of unity that square to these i.e. the roots of f are $e^{ \pm 2 \pi i / 3}$ and $e^{ \pm 2 \pi i / 6}$. Noting that some of these roots are primitive, the splitting field for f is the cyclotomic extension $\mathbb{Q}\left(\zeta_{6}\right)=\mathbb{Q}\left(e^{2 \pi i / 6}\right)$. The minimal polynomial for $e^{2 \pi i / 6}$ is the cyclotomic polynomial $\Phi_{6}(x)=x^{2}-x+1$, so the extension is degree 2. (See Dummit and Foote for this polynomial, or use Euler's formula to compute $\left.e^{2 \pi i / 6}=\frac{1}{2}+\frac{i \sqrt{3}}{2},\left(e^{2 \pi i / 6}\right)^{2}=e^{2 \pi i / 3}=-\frac{1}{2}+\frac{i \sqrt{3}}{2}\right)$.
4. Dummit and Foote \#13.4.6: Let K_{1} and K_{2} be finite extensions of F contained in the field K, and assume both are splitting fields over F.
a. Prove that their composite $K_{1} K_{2}$ is a splitting field over F.

Solution. If K_{1} is a splitting field (over F) for f_{1} and K_{2} is a splitting field for f_{2}, then the splitting field E for $f_{1} f_{2}$ is the intersection of all fields containing F and all the roots of both f_{1} and f_{2}. E must contain K_{1} since it is the intersection of all fields containing F and the roots of f_{1}, and similarly for K_{2}. On the other hand, $f_{1} f_{2}$ splits over any field containing both K_{1} and K_{2}, so E is the smallest field containing K_{1} and K_{2}, which by definition is the composite $K_{1} K_{2}$.
b. Prove that $K_{1} \cap K_{2}$ is a splitting field over F.

Solution. Let $g(x)$ be an irreducible polynomial in $F[x]$ with a root in $K_{1} \cap K_{2}$. We will show that $g(x)$ splits over $K_{1} \cap K_{2}$, so by Dummit \& Foote, Problem 13.4.5, $K_{1} \cap K_{2}$ is a splitting field. Since K_{1} and K_{2} are splitting fields containing a root of $g(x)$, it must be the case that $g(x)$ splits in both K_{1} and K_{2}. But since $K[x]$ is a UFD, these factorizations must be identical (up to units and order), so every factor must be contained in $\left(K_{1} \cap K_{2}\right)[x]$, so g splits over $K_{1} \cap K_{2}$.

