Math 418, Spring 2024 - Homework 4

Due: Wednesday, February 21st, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Dummit and Foote $\# 13.2 .1$: Let \mathbb{F} be a finite field of characteristic p. Prove that $|\mathbb{F}|=p^{n}$ for some positive integer n.
2. Dummit and Foote \#13.2.4: Determine the degree over \mathbb{Q} of $2+\sqrt{3}$ and of $1+$ $\sqrt[3]{2}+\sqrt[3]{4}$
3. Dummit and Foote $\# \mathbf{1 3 . 2 . 5}$: Let $F=\mathbb{Q}(i)$. Prove that $x^{3}-2$ and $x^{3}-3$ are irreducible over F.
4. Dummit and Foote $\# \mathbf{1 3 . 2 . 7}$: Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Conclude that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=4$. Find an irreducible polynomial satisfied by $\sqrt{2}+\sqrt{3}$.
5. Dummit and Foote \#13.3.2: Prove that Archimedes' construction actually trisects the angle θ. (See the book for the construction).
6. Dummit and Foote \#13.3.4: The construction of the regular 7-gon amounts to the constructibility of $\cos (2 \pi / 7)$. We shall see later (Section 14.5 and Exercise 2 of Section 14. 7) that $\alpha=2 \cos (2 \pi / 7)$ satisfies the equation $p(x)=x^{3}+x^{2}-2 x-1=0$. Use this to prove that the regular 7-gon is not constructible by straightedge and compass.
7. Dummit and Foote \#13.3.5: Use the fact that $\alpha=2 \cos (2 \pi / 5)$ satisfies the equation $x^{2}+x-1=0$ to conclude that the regular 5 -gon is constructible by straightedge and compass.
