Math 418, Spring 2024 – Homework 4

Due: Wednesday, February 21st, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, *Abstract Algebra*, *3rd Edition*. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

- 1. **Dummit and Foote** #13.2.1: Let \mathbb{F} be a finite field of characteristic p. Prove that $|\mathbb{F}| = p^n$ for some positive integer n.
- 2. **Dummit and Foote #13.2.4:** Determine the degree over \mathbb{Q} of $2 + \sqrt{3}$ and of $1 + \sqrt[3]{2} + \sqrt[3]{4}$.
- 3. Dummit and Foote #13.2.5: Let $F = \mathbb{Q}(i)$. Prove that $x^3 2$ and $x^3 3$ are irreducible over F.
- 4. **Dummit and Foote** #13.2.7: Prove that $\mathbb{Q}(\sqrt{2} + \sqrt{3}) = \mathbb{Q}(\sqrt{2}, \sqrt{3})$. Conclude that $[\mathbb{Q}(\sqrt{2} + \sqrt{3}) : \mathbb{Q}] = 4$. Find an irreducible polynomial satisfied by $\sqrt{2} + \sqrt{3}$.
- 5. **Dummit and Foote** #13.3.2: Prove that Archimedes' construction actually trisects the angle θ . (See the book for the construction).
- 6. Dummit and Foote #13.3.4: The construction of the regular 7-gon amounts to the constructibility of $\cos(2\pi/7)$. We shall see later (Section 14.5 and Exercise 2 of Section 14.7) that $\alpha = 2\cos(2\pi/7)$ satisfies the equation $p(x) = x^3 + x^2 2x 1 = 0$. Use this to prove that the regular 7-gon is not constructible by straightedge and compass.
- 7. **Dummit and Foote** #13.3.5: Use the fact that $\alpha = 2\cos(2\pi/5)$ satisfies the equation $x^2 + x 1 = 0$ to conclude that the regular 5-gon is constructible by straightedge and compass.