Math 418, Spring 2024 - Homework 4

Due: Wednesday, February 21st, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Dummit and Foote $\# 13.2 .1$: Let \mathbb{F} be a finite field of characteristic p. Prove that $|\mathbb{F}|=p^{n}$ for some positive integer n.
Solution. Since \mathbb{F} has characteristic p, the prime field of \mathbb{F} is isomorphic to \mathbb{F}_{p}. Therefore, F / \mathbb{F}_{p} is a field extension, so \mathbb{F} is a vector space over \mathbb{F}_{p}, and so $\mathbb{F}=$ $\left\{a_{1} v_{1}+\ldots+a_{n} v_{n} \mid a_{n} \in \mathbb{F}_{p}\right\}$ has order p^{n}.
2. Dummit and Foote \#13.2.4: Determine the degree over \mathbb{Q} of $2+\sqrt{3}$ and of $1+$ $\sqrt[3]{2}+\sqrt[3]{4}$
Solution. For the first problem, since $2+\sqrt{3} \in \mathbb{Q}(\sqrt{3})$ and $\sqrt{3} \in \mathbb{Q}(2+\sqrt{3})$, we have $\mathbb{Q}(2+\sqrt{3)}=\mathbb{Q}(\sqrt{3})$. By Proposition $11, \sqrt{3}$, the extension $\mathbb{Q}(\sqrt{3}) / \mathbb{Q}$, and $2+\sqrt{3}$ all have the same degree, and since $x^{2}-3$ is the minimal polynomial for $\sqrt{3}$, this degree is 2 .
We approach the second problem similarly. Let $\theta=1+\sqrt[3]{2}+\sqrt[3]{4} . \theta \in \mathbb{Q}(\sqrt[3]{2})$ since $\sqrt[3]{4}=(\sqrt[3]{2})^{2}$. On the other hand, $\theta^{2}=5+4 \sqrt[3]{2}+3 \sqrt[3]{4}$, so $\sqrt[3]{2}=\theta^{2}-3 \theta-2 \in \mathbb{Q}(\theta)$ Therefore, θ has the same degree as $\sqrt[3]{2}$ i.e. 3 .
Alternatively, we can show the containments in one direction, and use the Tower Law to show the extension degrees must be the same in each case.
3. Dummit and Foote $\# 13.2 .5$: Let $F=\mathbb{Q}(i)$. Prove that $x^{3}-2$ and $x^{3}-3$ are irreducible over F.

Solution. We'll consider the polynomial $p(x)=x^{3}-2$, and the other one is similar. By Proposition 11, we can prove the result by showing that $[\mathbb{Q}(i, \sqrt[3]{2}): \mathbb{Q}(i)]=3$ (see also Lemma 16). $p(x)$ is irreducible over \mathbb{Q} by Eisenstein's criterion, so it's the minimal polynomial for $\sqrt[3]{2}$, and by Proposition $11,[\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]=3$. Also, $[\mathbb{Q}(i): \mathbb{Q}]=2$ since i has minimal polynomial $x^{2}+1$. The Tower Law then says

$$
[\mathbb{Q}(i, \sqrt[3]{2}): \mathbb{Q}]=[\mathbb{Q}(i, \sqrt[3]{2}): \mathbb{Q}(i)][\mathbb{Q}(i): \mathbb{Q}]=[\mathbb{Q}(i, \sqrt[3]{2}): \mathbb{Q}(\sqrt[3]{2})][\mathbb{Q}(\sqrt[3]{2}): \mathbb{Q}]
$$

SO

$$
[\mathbb{Q}(i, \sqrt[3]{2}): \mathbb{Q}(i)]=\frac{3[\mathbb{Q}(i, \sqrt[3]{2}): \mathbb{Q}(\sqrt[3]{2})]}{2}
$$

is a multiple of 3 .
4. Dummit and Foote $\#$ 13.2.7: Prove that $\mathbb{Q}(\sqrt{2}+\sqrt{3})=\mathbb{Q}(\sqrt{2}, \sqrt{3})$. Conclude that $[\mathbb{Q}(\sqrt{2}+\sqrt{3}): \mathbb{Q}]=4$. Find an irreducible polynomial satisfied by $\sqrt{2}+\sqrt{3}$.
Solution. Since $\theta:=\sqrt{2}+\sqrt{3} \in \mathbb{Q}(\sqrt{2}, \sqrt{3})$, we have containment one way. For the other direction, note that $\theta^{3}=11 \sqrt{2}+9 \sqrt{3}$, so both $\sqrt{2}=\frac{1}{2}\left(\theta^{3}-9 \theta\right)$ and $\sqrt{3}=$ $-\frac{1}{2}\left(\theta^{3}-11 \theta\right)$ are in $\mathbb{Q}(\theta)$.
By Corollary $15,[\mathbb{Q}(\theta): \mathbb{Q}(\sqrt{2})] \leq 2$, and since $\sqrt{3} \notin \mathbb{Q}(\sqrt{2})$ this degree must equal 2 . Therefore, by the tower law,

$$
[\mathbb{Q}(\theta): \mathbb{Q}]=[\mathbb{Q}(\theta): \mathbb{Q}(\sqrt{2})][\mathbb{Q}(\sqrt{2}): \mathbb{Q}]=2 \cdot 2=4
$$

Finally, we compute $\theta^{2}=5+2 \sqrt{6}$ and $\theta^{4}=49+20 \sqrt{6}$, and conclude that $\theta^{4}-10 \theta^{2}+1=$ 0 .
5. Dummit and Foote \#13.3.2: Prove that Archimedes' construction actually trisects the angle θ. (See the book for the construction).
Solution. Let ϕ be the third angle of the triangle lying within the circle, ϵ be the angle supplementary to β, and η be the remaining angle of the other triangle. We have $\beta=\gamma$ and $\alpha=\eta$ since these pairs of angles are each part of the same isosceles triangle. Adding up the angles in the two triangles gives $\epsilon+2 \alpha=180^{\circ}$ and $\phi+2 \beta=180^{\circ}$. Decomposing straight line angles gives $\epsilon+\beta=180^{\circ}$ and $\alpha+\phi+\theta=180^{\circ}$; in particular, $\beta=2 \alpha$. Solving this last equation for θ and substituting, we get

$$
\theta=180^{\circ}-\phi-\alpha=2 \beta-\alpha=3 \alpha
$$

6. Dummit and Foote \#13.3.4: The construction of the regular 7-gon amounts to the constructibility of $\cos (2 \pi / 7)$. We shall see later (Section 14.5 and Exercise 2 of Section 14. 7) that $\alpha=2 \cos (2 \pi / 7)$ satisfies the equation $p(x)=x^{3}+x^{2}-2 x-1=0$. Use this to prove that the regular 7-gon is not constructible by straightedge and compass.
Solution. This problem amounts to showing that the degree of $\cos (2 \pi / 7)$ over \mathbb{Q} is not a power of 2 , for which it suffices to show that $p(x)$ is irreducible. Since $p(x)$ is cubic, by Propositions 9 and 10 of Chapter $9, p(x)$ is reducible if and only if it has a root. By the rational root theorem, such a root must be ± 1, and plugging in shows neither is a root.
7. Dummit and Foote $\# 13.3 .5$: Use the fact that $\alpha=2 \cos (2 \pi / 5)$ satisfies the equation $x^{2}+x-1=0$ to conclude that the regular 5 -gon is constructible by straightedge and compass.

Solution. Using the quadratic formula, $\alpha=\frac{-1 \pm \sqrt{5}}{2}$, which is constructible since the constructible numbers form a field which is closed under taking square roots. Constructing 1 and $\cos \theta$ allows us to construct the angle θ. Finally, the interior angle of a pentagon is $3 \pi / 5$, which is complimentary to $2 \pi / 5$.

