
Math 418, Spring 2024 – Homework 3

Due: Wednesday, February 7th, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are
from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless
otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain
you 2 bonus points per assignment.

1. Dummit and Foote #9.3.2: Prove that if f(x) and g(x) are polynomials with ra-
tional coefficients whose product f(x)g(x) has integer coefficients, then the product of
any coefficient of g(x) with any coefficient of f(x) is an integer.

Proof. By Gauss’ Lemma, since p(x) := f(x)g(x) factors over Q, it factors over Z, and
moreover, there exists m

n
∈ Q such that m

n
f(x) ∈ Z[x] and n

m
∈ Z[x]. Let a be any

coefficient of f(x) and b be any coefficient of g(x). Then m
n
· a ∈ Z and n

m
· b ∈ Z, so

ab = m
n
a n
m
b ∈ Z.

2. Dummit and Foote #9.4.2d: Let p be an odd prime. Prove that the polynomial
f(x) = (x+2)p−2p

x
is irreducible in Z[x].

Proof. First notice that f is indeed a polynomial since the numerator has zero constant
term. In fact, by the binomial theorem,

f(x) =

p∑
j=1

(
p

j

)
xj−12p−j.

This is a monic polynomial where every lower-degree coefficient is a multiple of p, and
the constant term is 2p−1p, which since p is odd is not a multiple of p2. Therefore, f(x)
satisfies the conditions for Eisenstein’s criterion, so is irreducible.

3. Dummit and Foote #9.4.10: Prove that the polynomial p(x) = x4 − 4x2 + 8x + 2
is irreducible over the quadratic field F = Q(

√
−2) = {a+ b

√
−2|a, b ∈ Q}.

Proof. See the hint in Dummit & Foote. By Gauss’ Lemma (technically, by Corollary
6 in Chapter 9), we only need to show that p(x) is irreducible over R = Z(

√
−2). Since

R is a UFD, we can apply similar reasoning to Proposition 11 in Chapter 9. If α ∈ R
is a root of p, then we have

2 = −α4 + 4α2 − 8α = α(−α3 + 4α− 8),
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so α|2 in R. The only elements of R dividing 2 are ±1,±
√
2,±2, so these are the only

possible roots of p(x). To see this consider the multiplicative group homomorphism
ϕ : R× → Z×, ϕ(a) = a2; we have ϕ(2) = 4, and ±1,±

√
−2,±2 are the only elements

of R with squared-absolute-value equal to a divisor of 4). Plugging these in, we see
that none of them is a root.

To show that p(x) can’t be factored as a product of quadratics, assume it can i.e.
p(x) = (x2 + ax + b)(x2 + cx + d) with a, b, c, d ∈ R (the fact that these factors
can be assumed monic is a consequence of Gauss’ Lemma that was mentioned in
class). Multiplying this out, we see that bd = 2, ad + bc = 8, ac + b + d = −4, and
a + c = 0. Therefore, c = −a, so a(d − b) = 8, so −64

(d−b)2
+ b + d = 4, and note that

b, d ∈ {±1,±
√
−2,±2}. Since −64

(d−b)2
∈ Z, so must be b+ d, so either b = −d = ±

√
−2

or b, d ∈ Z. In the first case, plugging in shows the equation is not satisfied, and in the
second case, −64

(d−b)2
< 0, and since b+ d ≤ 4, the equation is still not satisfied.

4. Dummit and Foote #9.4.12: Prove that f(x) = xn−1 + xn−2 + · · · + x + 1 is
irreducible over Z if and only if n is a prime.

Proof. The case n = 1 is trivial, since constant functions are units, and not considered
irreducible. See Example 4 on page 310 for the case where n is prime. If n is composite,
say p = ab, f(x) factors as

f(x) = (xa−1 + xa−2 + . . .+ x+ 1)(xa(b−1) + xa(b−2) + . . .+ xa + 1).

5. Dummit and Foote #13.1.1: Show that p(x) = x3 + 9x + 6 is irreducible in Q[x].
Let θ be a root of p(x). Find the inverse of 1 + θ in Q(θ) as a polynomial in θ

Solution. By Proposition 9.10 of Dummit and Foote, p(x) is reducible in Q[x] if and
only if it has a root in Q. By the Rational Root Theorem, if r = a/b ∈ Q, then a
divides the constant term, 6, of p, and b divides the coefficient, 1, of the top degree
term of p. Therefore, r must equal ±1,±2,±3, or ±6. Plugging these values into p(x)
shows that none of them are roots, so p is irreducible.

Alternatively, we can use Eisenstein’s criterion. All coefficients in p(x) are divisible by
3 except for the top degree term, and the constant term is not divisible by 9. Therefore,
p(x) satisfies the hypotheses of Eisenstein’s criterion, so is irreducible.

Now, the inverse of 1+ θ in Q(θ) is some Q-linear combination a+ bθ+ cθ2 of 1, θ, and
θ2, since these form a basis for Q(θ) over Q. Since θ is a root of p, θ3 = −9θ − 6, so

(1+ θ)(a+ bθ+ cθ2) = a+(a+ b)θ+(b+ c)θ2+ cθ3 = a− 6c+(a+ b− 9c)θ+(b+ c)θ2.

For a + bθ + cθ2 to be the inverse of 1 + θ, this expression must equal 1, and solving
the resulting system of equations gives a = 5

2
, b = −1

4
, c = 1

4
, so θ−1 = 5

2
− 1

4
θ + 1

4
θ2.
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6. Dummit and Foote #13.1.3: Show that p(x) = x3+x+1 is irreducible over F2 and
let θ be a root. Compute the powers of θ in F2(θ) as polynomials in θ of degree ≤ 2.

Solution. Once again, p(x) is irreducible unless it has a root. F2 only has two elements,
so we plug them both in and find that neither is a root: p(0) = p(1) = 1. Therefore,
p(x) is irreducible.

To compute the powers of θ, note that θ is a root of p, so θ3 = −θ − 1 = θ + 1, since
in F2, 1 and −1 are equal!. Then

θ4 = θ(θ + 1) = θ2 + θ, θ5 = θ(θ2 + θ) = θ2 + θ + 1,

θ6 = θ(θ2 + θ + 1) = θ2 + 1, θ7 = θ(θ2 + 1) = 1,

and the powers of θ repeat from there via the relationship θn = θ7θn−7 = θn−7, so that
θ7i+j = θj.

7. Dummit and Foote #13.1.4: Prove directly that the map a+ b
√
2 7→ a− b

√
2 is an

isomorphism of Q(
√
2) with itself.

Solution. Let φ be the given map. Since φ(φ(a + b
√
2)) = φ(a − b

√
2) = a + b

√
2,

φ ◦ φ is the identity map, so it is its own inverse, and therefore a bijection.

The following computations show that φ is a ring homomorphism:

φ((a+b
√
2)+(c+d

√
2)) = φ(a+c+(b+d)

√
2) = a+c−(b+d)

√
2 = φ(a+b

√
2)+φ(c+d

√
2),

φ((a+b
√
2)(c+d

√
2)) = φ(ac+2bd+(ad+bc)

√
2) = ac+2bd−(ad+bc)

√
2 = φ(a+b

√
2)φ(c+d

√
2),

and we don’t need to check that φ(1) = 1 since Q(
√
2) is a field.

Note that φ is the isomorphism given in Theorem 8.
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