Math 418, Spring 2024 - Homework 2

Due: Wednesday, January 31st, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Let R be a Principal Ideal Domain, and I an ideal of R. Prove that every ideal of $S:=R / I$ is principal. (S may fail to be an integral domain, and hence is not always a P.I.D itself; for example, $R=\mathbb{Z}$ and $I=4 \mathbb{Z}$.)
2. Dummit and Foote $\# 8.2 .5$: Let R be the quadratic integer ring $\mathbb{Z}[\sqrt{-5}]$. Define the ideals $I_{2}=(2,1+\sqrt{-5}), I_{3}=(3,2+\sqrt{-5})$, and $I_{3}^{\prime}=(3,2-\sqrt{-5})$.
(a) Prove that I_{2}, I_{3}, and I_{3}^{\prime} are nonprincipal ideals in R. (Hint: use Homework 1 Problem 6)
(b) Prove that the product of two nonprincipal ideals can be principal by showing that $I_{2}^{2}=(2)$.
(c) Prove similarly that $I_{2} I_{3}=(1-\sqrt{-5})$ and $I_{2} I_{3}^{\prime}=(1+\sqrt{-5})$ are principal. Conclude that the principal ideal (6) is the product of 4 ideals: $(6)=I_{2}^{2} I_{3} I_{3}^{\prime}$.
3. Dummit and Foote \#8.2.7: An integral domain R in which every ideal generated by two elements is principal (i.e., for every $a, b \in R,(a, b)=(d)$ for some $d \in R)$ is called a Bezout Domain.
(a) Prove that the integral domain R is a Bezout Domain if and only if every pair of elements a, b of R has a g.c.d. d in R that can be written as an R-linear combination of a and b, i.e., $d=a x+b y$ for some $x, y \in R$.
(b) Prove that every finitely generated ideal of a Bezout Domain is principal.
(c) Let F be the fraction field of the Bezout Domain R (since R is an integral domain, this has the form $F=\{a / b \mid a \in R, b \in R \backslash\{0\}\}$, with $a / b=c / d$ if and only if $a d=b c$.). Prove that every element of F can be written in the form a / b with $a, b \in R$ and a and b relatively prime (1 is a gcd of a and b).
4. Dummit and Foote \#8.3.6:
(a) Prove that the quotient ring $\mathbb{Z}[i] /(1+i)$ is a field of order 2.
(b) Let $q \in \mathbb{Z}, q>0$ be a prime with $q \equiv 3 \bmod 4$. Prove that the quotient ring $\mathbb{Z}[i] /(q)$ is a field with q^{2} elements.
(c) Let $p \in \mathbb{Z}, p>0$ be a prime with $p \equiv 1 \bmod 4$ and write $p=\pi \bar{\pi}$ as in Proposition 18 ($\bar{\pi}$ is the complex conjugate of π). Show that the hypotheses for the Chinese Remainder Theorem (Theorem 17 in Section 7 .6) are satisfied and that $\mathbb{Z}[i] /(p) \cong$ $\mathbb{Z}[i] /(\pi) \times \mathbb{Z}[i] /(\bar{\pi})$ as rings. Show that the quotient ring $\mathbb{Z}[i] /(p)$ has order p^{2} and conclude that $\mathbb{Z}[i] /(\pi)$ and $\mathbb{Z}[i] /(\bar{\pi})$ are both fields of order p.
5. Dummit and Foote \#8.3.11: Prove that R is a P.I.D. if and only if R is a U.F.D. that is also a Bezout Domain.
6. Dummit and Foote $\# 9.3 .1$: Let R be an integral domain with quotient field F and let $p(x)$ be a monic polynomial in $R[x]$. Assume that $p(x)=a(x) b(x)$ where $a(x)$ and $b(x)$ are monic polynomials in $F[x]$ of smaller degree than $p(x)$. Prove that if $a(x) \notin R[x]$ then R is not a Unique Factorization Domain. Deduce that $\mathbb{Z}[2 \sqrt{2}]$ is not a U.F.D.
