
Math 418, Spring 2024 – Homework 2

Due: Wednesday, January 31st, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are
from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless
otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain
you 2 bonus points per assignment.

1. Let R be a Principal Ideal Domain, and I an ideal of R. Prove that every ideal of
S := R/I is principal. (S may fail to be an integral domain, and hence is not always
a P.I.D itself; for example, R = Z and I = 4Z.)

Proof. By the Fourth (or “Lattice”) Isomorphism Theorem (see Dummit and Foote
Theorem 7.8(3)), the canonical map J → J/I from the set of ideals in R containing
I to the set of ideals of R/I is a 1-1 correspondence. Since R is PID, let J = (a).
We check that ā ∈ R/I generates J/I. Suppose r̄ is an element in J/I. Choose
a representative r ∈ J for r̄. Then r = ba for some b ∈ R. But then we have
ba = (b+ I)(a+ I) = ba+ I = r + I = r in R/I, so J/I = (a).

2. Dummit and Foote #8.2.5: Let R be the quadratic integer ring Z[
√
−5]. Define the

ideals I2 = (2, 1 +
√
−5), I3 = (3, 2 +

√
−5), and I ′3 = (3, 2−

√
−5).

(a) Prove that I2, I3, and I ′3 are nonprincipal ideals in R. (Hint: use Homework 1
Problem 6)

Proof. Suppose I2 is principal i.e. I2 = (r). This means that 2 = u1r and
1+

√
−5 = u2r. From Problem 6b of Homework 1, 2 and 1+

√
−5 are irreducible

in Z[
√
−5]. This implies that u1 and u2 are units (because if r is a unit, then

I2 = R, and it can be directly checked that 1 /∈ I2 – see below). But then
1 +

√
−5 = u2u

−1
1 2, and by Problem 6b of Homework 1 this cannot be so (using

the fact from Problem 6a of Homework 1 that the set of units in R is {1,−1}).
To check that 1 /∈ I2, consider the ring Z[

√
−5]/(2) = (Z/2Z)[

√
−5] = {0, 1,

√
−5, 1+√

−5} is an integral domain. In Z[
√
−5]/(2), (1+

√
−5)2 = 0, so 1 /∈ (1+

√
−5) ⊆

Z[
√
−5]/(2), so 1 /∈ (2, 1 +

√
−5) ⊆ Z[

√
−5].

Identical arguments show that I3 and I ′3 are non-principal.

(b) Prove that the product of two nonprincipal ideals can be principal by showing
that I22 = (2).

1



Proof. The ideal I22 is generated by {r1, r2, r3} = {4, 2 + 2
√
−5,−4 + 2

√
−5}.

First observe that 2 = r2 − r1 − r3, so the ideal (2) sits inside I22 . Also, 4 =
2 ·2, 2+2

√
−5 = 2 · (1+

√
−5),−4+2

√
−5 = 2 · (−2+

√
−5), and so the opposite

inclusion is also true. So I22 = (2).

(c) Prove similarly that I2I3 = (1 −
√
−5) and I2I

′
3 = (1 +

√
−5) are principal.

Conclude that the principal ideal (6) is the product of 4 ideals: (6) = I22I3I
′
3.

Proof. By entirely similar argument as part (b), we can show that I2I3 = (1 −√
−5) and I2I

′
3 = (1+

√
−5). Since 6 = (1−

√
−5)(1+

√
−5), the conclusion that

(6) = I22I3I
′
3 follows directly.

3. Dummit and Foote #8.2.7: An integral domain R in which every ideal generated by
two elements is principal (i.e., for every a, b ∈ R, (a, b) = (d) for some d ∈ R) is called
a Bezout Domain.

(a) Prove that the integral domain R is a Bezout Domain if and only if every pair
of elements a, b of R has a g.c.d. d in R that can be written as an R-linear
combination of a and b, i.e., d = ax+ by for some x, y ∈ R.

Proof. First assume R is a Bezout domain, and let a, b ∈ R. Let (d) = (a, b);
the two directions of containment mean that d divides a and b, so it is a common
divisor, and d can be written in the form d = ax = by, x, y ∈ R. Finally if d′|a
and d′|b, then d′|(ax+ by) = d, so d is a gcd.

For the other direction, suppose that every pair of elements a, b of R has a g.c.d.
d in R that can be written as an R-linear combination of a and b, i.e., d = ax+ by
for some x, y ∈ R. Then if a, b ∈ R, let d be a gcd of a and b, and let d = ax+ by
be the promised R-linear combination. Since d is a gcd, we have a, b ∈ (d), and
since d is a linear combination, d ∈ (a, b); thus (a, b) = (d) is principal.

(b) Prove that every finitely generated ideal of a Bezout Domain is principal.

Proof. Let I = (a1, . . . , an) be a finitely-generated ideal with n ≥ 2. Let d be a gcd
of an−1 and an such that d = an−1x+ any, x, y ∈ R, and let J = (a1, . . . , an−2, d).
Then I ⊆ J since an−1, an ∈ (d) ⊆ J . On the other hand, J ⊆ I since d =
an−1x + any ∈ (an−1, an) ⊆ I. Thus, I has one fewer generator than in the
original presentation, so by induction I is principal.

(c) Let F be the fraction field of the Bezout Domain R (since R is an integral domain,
this has the form F = {a/b|a ∈ R, b ∈ R \ {0}}, with a/b = c/d if and only if
ad = bc.). Prove that every element of F can be written in the form a/b with
a, b ∈ R and a and b relatively prime (1 is a gcd of a and b).
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Proof. Let a/b ∈ F , and let d be a gcd of a and b i.e. a = du, b = dv. Then v ̸= 0
since b ̸= 0 (so d also ̸= 0) and u/v = a/b since bu = duv = av.

Let e be a common divisor of u and v i.e u = ex, v = ey. Then a = dex, b = dey,
so de is a common divisor of a and b. Since d is a gcd, this means that de|d, so
e is a unit (this follows from the “cancellation property” for integral domains. In
more detail, d = dez, so 0 = d − dez = d(1 − ez), and so 1 − ez = 0). Since
every common divisor of u and v is a unit, they divide 1, which is itself a common
divisor of u and v, so 1 is a gcd of u and v.

4. Dummit and Foote #8.3.6:

(a) Prove that the quotient ring Z[i]/(1 + i) is a field of order 2.

Proof. Z[i] is a Euclidean domain, hence a PID. Simple norm arguments show
that 1 + i is irreducible, and in a PID this means that 1 + i is prime. Therefore,
(1 + i) is a prime ideal, and again since Z[i] is a PID, this means it is maximal;
thus, Z[i]/(1 + i) is a field. Now, in Z[i]/(1 + i) we have 2 = (1 + i)(1 − i) = 0
and i = 1+ i− 1 = −1 = 1, so 0 and 1 are the only elements of Z[i]/(1 + i) (and
since 1 + i is not a unit is Z[i], the quotient can’t be just {0}).

(b) Let q ∈ Z, q > 0 be a prime with q ≡ 3 mod 4. Prove that the quotient ring
Z[i]/(q) is a field with q2 elements.

Proof. Since q is prime in Z and ≡ 3 mod 4, by Fermat’s sum-of-squares theorem
and our lemma from class, q is prime in Z[i]. Therefore, (q) is a prime ideal in
Z[i], so since Z[i] is a PID (q) is maximal and Z[i]/(q) is a field. The following is
a complete set of coset representatives:

{a+ bi|0 ≤ a < q, 0 ≤ b < q},

and this has size q2.

(c) Let p ∈ Z, p > 0 be a prime with p ≡ 1 mod 4 and write p = ππ as in Proposition
18 (π is the complex conjugate of π). Show that the hypotheses for the Chinese
Remainder Theorem (Theorem 17 in Section 7 .6) are satisfied and that Z[i]/(p) ∼=
Z[i]/(π)×Z[i]/(π) as rings. Show that the quotient ring Z[i]/(p) has order p2 and
conclude that Z[i]/(π) and Z[i]/(π) are both fields of order p.

Proof. Since p is prime in Z, π and π are non-real, and therefore distinct. They are
irreducibles since their norms are prime, so by the argument in part (a), Z[i]/(π)
and Z[i]/(π) are fields.

Since the units in Z[i] are just {1,−1, i,−i}, we also see that π and π are not
associates. Since their norms are prime, this means that their gcd equals 1. Since
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Z[i] is a PID, this means that 1 is a Z[i]-linear combination of π and π i.e. (π)
and (π) are comaximal.

By the Chinese Remainder Theorem, Z[i]/(p) ∼= Z[i]/(π) × Z[i]/(π). As in part
b,

{a+ bi|0 ≤ a < p, 0 ≤ b < p}

is a complete set of coset representatives for Z[i]/(p), of size p2. Since neither
Z[i]/(π) nor Z[i]/(π) is the zero ring, they must both have order p since this is
the only nontrivial factorization of p2 in Z.

5. Dummit and Foote #8.3.11: Prove that R is a P.I.D. if and only if R is a U.F.D. that
is also a Bezout Domain.

Proof. In the forward direction suppose R is a P.I.D. Then, by definition, it is also a
Bezout Domain and we have proved in class that it is also a U.F.D.

Conversely, suppose I is an ideal. Let a be a non-zero element of I with the minimal
number of irreducible factors. We will show that I = (a). So suppose there is a non-
zero element b ∈ I such that b /∈ (a). Consider the ideal (a, b). Because R is a Bezout
domain (a, b) = (c) for some non-zero element c. This implies that a = rc for some
element r. If r is a unit, then b ∈ (a), a contradiction. But then, since R is a U.F.D,
this implies that the element c has a smaller number of irreducible factors, again a
contradiction.

6. Dummit and Foote #9.3.1: Let R be an integral domain with quotient field F and let
p(x) be a monic polynomial in R[x]. Assume that p(x) = a(x)b(x) where a(x) and b(x)
are monic polynomials in F [x] of smaller degree than p(x). Prove that if a(x) /∈ R[x]
then R is not a Unique Factorization Domain. Deduce that Z[2

√
2] is not a U.F.D.

Proof. SupposeR is a UFD. By Gauss’ Lemma, there exists r ∈ F such that ra(x), r−1b(x) ∈
R[x]. Since a and b are monic, r, r−1 ∈ R, but this means that a(x) = r−1ra(x) ∈ R[x]
and b(x) = rr−1b(x) ∈ R[x], a contradiction.

In Z[2
√
2][x], let p(x) = x2 + 2

√
2x+ 8 = (x+

√
2)(x−

√
2). Both factors are monic,

of smaller degree, and since
√
2 /∈ Z[2

√
2], the factors are not contained in Z[2

√
2][x].

Therefore, Z[2
√
2 is not a UFD. (In particular, 8 = 23 = (2

√
2)2 is an element with

distinct factorizations into irreducibles).
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