Math 418, Spring 2024 - Homework 2

Due: Wednesday, January 31st, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Let R be a Principal Ideal Domain, and I an ideal of R. Prove that every ideal of $S:=R / I$ is principal. (S may fail to be an integral domain, and hence is not always a P.I.D itself; for example, $R=\mathbb{Z}$ and $I=4 \mathbb{Z}$.)

Proof. By the Fourth (or "Lattice") Isomorphism Theorem (see Dummit and Foote Theorem 7.8(3)), the canonical map $J \rightarrow J / I$ from the set of ideals in R containing I to the set of ideals of R / I is a $1-1$ correspondence. Since R is PID, let $J=(a)$. We check that $\bar{a} \in R / I$ generates J / I. Suppose \bar{r} is an element in J / I. Choose a representative $r \in J$ for \bar{r}. Then $r=b a$ for some $b \in R$. But then we have $\bar{b} \bar{a}=(b+I)(a+I)=b a+I=r+I=\bar{r}$ in R / I, so $J / I=(\bar{a})$.
2. Dummit and Foote $\# 8.2 .5$: Let R be the quadratic integer ring $\mathbb{Z}[\sqrt{-5}]$. Define the ideals $I_{2}=(2,1+\sqrt{-5}), I_{3}=(3,2+\sqrt{-5})$, and $I_{3}^{\prime}=(3,2-\sqrt{-5})$.
(a) Prove that I_{2}, I_{3}, and I_{3}^{\prime} are nonprincipal ideals in R. (Hint: use Homework 1 Problem 6)

Proof. Suppose I_{2} is principal i.e. $I_{2}=(r)$. This means that $2=u_{1} r$ and $1+\sqrt{-5}=u_{2} r$. From Problem 6b of Homework 1, 2 and $1+\sqrt{-5}$ are irreducible in $\mathbb{Z}[\sqrt{-5}]$. This implies that u_{1} and u_{2} are units (because if r is a unit, then $I_{2}=R$, and it can be directly checked that $1 \notin I_{2}$ - see below). But then $1+\sqrt{-5}=u_{2} u_{1}^{-1} 2$, and by Problem 6b of Homework 1 this cannot be so (using the fact from Problem 6a of Homework 1 that the set of units in R is $\{1,-1\}$).
To check that $1 \notin I_{2}$, consider the ring $\mathbb{Z}[\sqrt{-5}] /(2)=(\mathbb{Z} / 2 \mathbb{Z})[\sqrt{-5}]=\{0,1, \sqrt{-5}, 1+$ $\sqrt{-5}\}$ is an integral domain. In $\mathbb{Z}[\sqrt{-5}] /(2),(1+\sqrt{-5})^{2}=0$, so $1 \notin(1+\sqrt{-5}) \subseteq$ $\mathbb{Z}[\sqrt{-5}] /(2)$, so $1 \notin(2,1+\sqrt{-5}) \subseteq \mathbb{Z}[\sqrt{-5}]$.
Identical arguments show that I_{3} and I_{3}^{\prime} are non-principal.
(b) Prove that the product of two nonprincipal ideals can be principal by showing that $I_{2}^{2}=(2)$.

Proof. The ideal I_{2}^{2} is generated by $\left\{r_{1}, r_{2}, r_{3}\right\}=\{4,2+2 \sqrt{-5},-4+2 \sqrt{-5}\}$. First observe that $2=r_{2}-r_{1}-r_{3}$, so the ideal (2) sits inside I_{2}^{2}. Also, $4=$ $2 \cdot 2,2+2 \sqrt{-5}=2 \cdot(1+\sqrt{-5}),-4+2 \sqrt{-5}=2 \cdot(-2+\sqrt{-5})$, and so the opposite inclusion is also true. So $I_{2}^{2}=(2)$.
(c) Prove similarly that $I_{2} I_{3}=(1-\sqrt{-5})$ and $I_{2} I_{3}^{\prime}=(1+\sqrt{-5})$ are principal. Conclude that the principal ideal (6) is the product of 4 ideals: $(6)=I_{2}^{2} I_{3} I_{3}^{\prime}$.

Proof. By entirely similar argument as part (b), we can show that $I_{2} I_{3}=(1-$ $\sqrt{-5})$ and $I_{2} I_{3}^{\prime}=(1+\sqrt{-5})$. Since $6=(1-\sqrt{-5})(1+\sqrt{-5})$, the conclusion that (6) $=I_{2}^{2} I_{3} I_{3}^{\prime}$ follows directly.
3. Dummit and Foote \#8.2.7: An integral domain R in which every ideal generated by two elements is principal (i.e., for every $a, b \in R,(a, b)=(d)$ for some $d \in R)$ is called a Bezout Domain.
(a) Prove that the integral domain R is a Bezout Domain if and only if every pair of elements a, b of R has a g.c.d. d in R that can be written as an R-linear combination of a and b, i.e., $d=a x+b y$ for some $x, y \in R$.

Proof. First assume R is a Bezout domain, and let $a, b \in R$. Let $(d)=(a, b)$; the two directions of containment mean that d divides a and b, so it is a common divisor, and d can be written in the form $d=a x=b y, x, y \in R$. Finally if $d^{\prime} \mid a$ and $d^{\prime} \mid b$, then $d^{\prime} \mid(a x+b y)=d$, so d is a gcd.
For the other direction, suppose that every pair of elements a, b of R has a g.c.d. d in R that can be written as an R-linear combination of a and b, i.e., $d=a x+b y$ for some $x, y \in R$. Then if $a, b \in R$, let d be a gcd of a and b, and let $d=a x+b y$ be the promised R-linear combination. Since d is a gcd, we have $a, b \in(d)$, and since d is a linear combination, $d \in(a, b)$; thus $(a, b)=(d)$ is principal.
(b) Prove that every finitely generated ideal of a Bezout Domain is principal.

Proof. Let $I=\left(a_{1}, \ldots, a_{n}\right)$ be a finitely-generated ideal with $n \geq 2$. Let d be a gcd of a_{n-1} and a_{n} such that $d=a_{n-1} x+a_{n} y, x, y \in R$, and let $J=\left(a_{1}, \ldots, a_{n-2}, d\right)$. Then $I \subseteq J$ since $a_{n-1}, a_{n} \in(d) \subseteq J$. On the other hand, $J \subseteq I$ since $d=$ $a_{n-1} x+a_{n} y \in\left(a_{n-1}, a_{n}\right) \subseteq I$. Thus, I has one fewer generator than in the original presentation, so by induction I is principal.
(c) Let F be the fraction field of the Bezout Domain R (since R is an integral domain, this has the form $F=\{a / b \mid a \in R, b \in R \backslash\{0\}\}$, with $a / b=c / d$ if and only if $a d=b c$.). Prove that every element of F can be written in the form a / b with $a, b \in R$ and a and b relatively prime (1 is a gcd of a and b).

Proof. Let $a / b \in F$, and let d be a gcd of a and b i.e. $a=d u, b=d v$. Then $v \neq 0$ since $b \neq 0$ (so d also $\neq 0$) and $u / v=a / b$ since $b u=d u v=a v$.
Let e be a common divisor of u and v i.e $u=e x, v=e y$. Then $a=d e x, b=d e y$, so $d e$ is a common divisor of a and b. Since d is a gcd, this means that $d e \mid d$, so e is a unit (this follows from the "cancellation property" for integral domains. In more detail, $d=d e z$, so $0=d-d e z=d(1-e z)$, and so $1-e z=0)$. Since every common divisor of u and v is a unit, they divide 1 , which is itself a common divisor of u and v, so 1 is a gcd of u and v.
4. Dummit and Foote \#8.3.6:
(a) Prove that the quotient ring $\mathbb{Z}[i] /(1+i)$ is a field of order 2 .

Proof. $\mathbb{Z}[i]$ is a Euclidean domain, hence a PID. Simple norm arguments show that $1+i$ is irreducible, and in a PID this means that $1+i$ is prime. Therefore, $(1+i)$ is a prime ideal, and again since $\mathbb{Z}[i]$ is a PID, this means it is maximal; thus, $\mathbb{Z}[i] /(1+i)$ is a field. Now, in $\mathbb{Z}[i] /(1+i)$ we have $2=(1+i)(1-i)=0$ and $i=1+i-1=-1=1$, so 0 and 1 are the only elements of $\mathbb{Z}[i] /(1+i)$ (and since $1+i$ is not a unit is $\mathbb{Z}[i]$, the quotient can't be just $\{0\}$).
(b) Let $q \in \mathbb{Z}, q>0$ be a prime with $q \equiv 3 \bmod 4$. Prove that the quotient ring $\mathbb{Z}[i] /(q)$ is a field with q^{2} elements.

Proof. Since q is prime in \mathbb{Z} and $\equiv 3 \bmod 4$, by Fermat's sum-of-squares theorem and our lemma from class, q is prime in $\mathbb{Z}[i]$. Therefore, (q) is a prime ideal in $\mathbb{Z}[i]$, so since $\mathbb{Z}[i]$ is a PID (q) is maximal and $\mathbb{Z}[i] /(q)$ is a field. The following is a complete set of coset representatives:

$$
\{a+b i \mid 0 \leq a<q, 0 \leq b<q\}
$$

and this has size q^{2}.
(c) Let $p \in \mathbb{Z}, p>0$ be a prime with $p \equiv 1 \bmod 4$ and write $p=\pi \bar{\pi}$ as in Proposition 18 ($\bar{\pi}$ is the complex conjugate of π). Show that the hypotheses for the Chinese Remainder Theorem (Theorem 17 in Section 7.6) are satisfied and that $\mathbb{Z}[i] /(p) \cong$ $\mathbb{Z}[i] /(\pi) \times \mathbb{Z}[i] /(\bar{\pi})$ as rings. Show that the quotient ring $\mathbb{Z}[i] /(p)$ has order p^{2} and conclude that $\mathbb{Z}[i] /(\pi)$ and $\mathbb{Z}[i] /(\bar{\pi})$ are both fields of order p.

Proof. Since p is prime in \mathbb{Z}, π and $\bar{\pi}$ are non-real, and therefore distinct. They are irreducibles since their norms are prime, so by the argument in part (a), $\mathbb{Z}[i] /(\pi)$ and $\mathbb{Z}[i] /(\bar{\pi})$ are fields.
Since the units in $\mathbb{Z}[i]$ are just $\{1,-1, i,-i\}$, we also see that π and $\bar{\pi}$ are not associates. Since their norms are prime, this means that their gcd equals 1. Since
$\mathbb{Z}[i]$ is a PID, this means that 1 is a $\mathbb{Z}[i]$-linear combination of π and $\bar{\pi}$ i.e. (π) and $(\bar{\pi})$ are comaximal.
By the Chinese Remainder Theorem, $\mathbb{Z}[i] /(p) \cong \mathbb{Z}[i] /(\pi) \times \mathbb{Z}[i] /(\bar{\pi})$. As in part b,

$$
\{a+b i \mid 0 \leq a<p, 0 \leq b<p\}
$$

is a complete set of coset representatives for $\mathbb{Z}[i] /(p)$, of size p^{2}. Since neither $\mathbb{Z}[i] /(\pi)$ nor $\mathbb{Z}[i] /(\bar{\pi})$ is the zero ring, they must both have order p since this is the only nontrivial factorization of p^{2} in \mathbb{Z}.
5. Dummit and Foote \#8.3.11: Prove that R is a P.I.D. if and only if R is a U.F.D. that is also a Bezout Domain.

Proof. In the forward direction suppose R is a P.I.D. Then, by definition, it is also a Bezout Domain and we have proved in class that it is also a U.F.D.

Conversely, suppose I is an ideal. Let a be a non-zero element of I with the minimal number of irreducible factors. We will show that $I=(a)$. So suppose there is a nonzero element $b \in I$ such that $b \notin(a)$. Consider the ideal (a, b). Because R is a Bezout domain $(a, b)=(c)$ for some non-zero element c. This implies that $a=r c$ for some element r. If r is a unit, then $b \in(a)$, a contradiction. But then, since R is a U.F.D, this implies that the element c has a smaller number of irreducible factors, again a contradiction.
6. Dummit and Foote $\# 9.3 .1$: Let R be an integral domain with quotient field F and let $p(x)$ be a monic polynomial in $R[x]$. Assume that $p(x)=a(x) b(x)$ where $a(x)$ and $b(x)$ are monic polynomials in $F[x]$ of smaller degree than $p(x)$. Prove that if $a(x) \notin R[x]$ then R is not a Unique Factorization Domain. Deduce that $\mathbb{Z}[2 \sqrt{2}]$ is not a U.F.D.

Proof. Suppose R is a UFD. By Gauss' Lemma, there exists $r \in F$ such that $r a(x), r^{-1} b(x) \in$ $R[x]$. Since a and b are monic, $r, r^{-1} \in R$, but this means that $a(x)=r^{-1} r a(x) \in R[x]$ and $b(x)=r r^{-1} b(x) \in R[x]$, a contradiction.
In $\mathbb{Z}[2 \sqrt{2}][x]$, let $p(x)=x^{2}+2 \sqrt{2} x+8=(x+\sqrt{2})(x-\sqrt{2})$. Both factors are monic, of smaller degree, and since $\sqrt{2} \notin \mathbb{Z}[2 \sqrt{2}]$, the factors are not contained in $\mathbb{Z}[2 \sqrt{2}][x]$. Therefore, $\mathbb{Z}\left[2 \sqrt{2}\right.$ is not a UFD. (In particular, $8=2^{3}=(2 \sqrt{2})^{2}$ is an element with distinct factorizations into irreducibles).

