## Math 418, Spring 2024 - Homework 10

Due: Wednesday, April 31st, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Let $k$ be an algebraically closed field, and consider the polynomial ring $k[x, y]$.
(a) Let $V$ be the $x$-axis, i.e. $V=V(y)$. Prove that $V$ is irreducible. [Hint: Show a prime ideal is radical.]
(b) Prove that $V=V(x-y)$ is irreducible.
(c) Prove that $S=\left\{(a, a) \in k^{2} \mid a \neq 1\right\}$ is not an algebraic variety if $k=\mathbb{C}$.
(d) What is the decomposition of $V=V\left(x^{2}-y^{2}\right)$ into irreducibles? Warning: The answer depends on $k$ !
2. Dummit and Foote \#15.1.2 Show that each of the following rings are not Noetherian by exhibiting an explicit infinite increasing chain of ideals:
(a) the ring of continuous real valued functions on $[0,1]$,
(b) the ring of all functions from any infinite set $X$ to $\mathbb{Z} / 2 \mathbb{Z}$.
3. Dummit and Foote $\# \mathbf{1 5 . 1 . 2 0}$ If $f$ and $g$ are irreducible polynomials in $k[x, y]$ that are not associates (do not divide each other), show that $V((f, g))$ is either $\emptyset$ or a finite set in $k^{2}$. [Hint: If $(f, g) \neq(1)$, show $(f, g)$ contains a nonzero polynomial in $k[x]$ (and similarly a nonzero polynomial in $k[y])$ by letting $R=k[x], F=k(x)$, and applying Gauss's Lemma to show $f$ and $g$ are relatively prime in $F[y]$.]
4. Dummit and Foote $\# \mathbf{1 5 . 2 . 2}$ Let $I$ and $J$ be ideals in the ring $R$. Prove the following statements:
(a) If $I^{k} \subseteq J$ for some $k \geq 1$, then $\sqrt{I} \subseteq \sqrt{J}$.
(b) If $I^{k} \subseteq J \subseteq I$ for some $k \geq 1$, then $\sqrt{I}=\sqrt{J}$.
(c) $\sqrt{I J}=\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$.
(d) $\sqrt{\sqrt{I}}=\sqrt{I}$.
(e) $\sqrt{I}+\sqrt{J} \subseteq \sqrt{I+J}$ and $\sqrt{I+J}=\sqrt{\sqrt{I}+\sqrt{J}}$.
5. Dummit and Foote \#15.2.3 Prove that the intersection of two radical ideals is again a radical ideal.
6. Dummit and Foote $\# \mathbf{1 5 . 2 . 5}$ If $I=(x y,(x-y) z) \subseteq k[x, y, z]$ prove that $\sqrt{I}=$ $(x y, x z, y z)$. For this ideal prove directly that $V(I)=V(\sqrt{I})$, that $V(I)$ is not irreducible, and that $\sqrt{I}$ is not prime.
