
Math 418, Spring 2024 – Homework 10

Due: Wednesday, April 31st, at 9:00am via Gradescope.

Instructions: Students should complete and submit all problems. Textbook problems are
from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless
otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain
you 2 bonus points per assignment.

1. Let k be an algebraically closed field, and consider the polynomial ring k[x, y].

(a) Let V be the x-axis, i.e. V = V (y). Prove that V is irreducible. [Hint: Show a
prime ideal is radical.]

Solution. If I is a prime ideal, then if a · · · a = an ∈ I, then a or a or . . . or a is
in I, so a ∈ I and so I is radical.

y is irreducible since it is degree 1, so it is prime since k[x, y] is a UFD. Therefore,
(y) is a prime ideal, so by the bijection proved in class, V (y) is irreducible.

(b) Prove that V = V (x− y) is irreducible.

Solution. Similarly, x − y is irreducible since it is degree 1, so it is prime since
k[x, y] is a UFD. Therefore, (x− y) is a prime ideal, so by the bijection proved in
class, V (x− y) is irreducible.

(c) Prove that S = {(a, a) ∈ k2|a ̸= 1} is not an algebraic variety if k = C.
Solution. Let V = {(a, a) ∈ k2|a ∈ k}. then this is a variety with I(V ) = (x−y).
If S is a variety, we have V (I(S)) = S. Let f(x, y) ∈ I(S), and let g(x) = f(x, x).
Since f ∈ I(V ), f(a, a) = 0 for all a ̸= 0, so g(x) has roots at all a ̸= 0. This
is infinitely many roots and g is a polynomial, so g = 0, and so f(0, 0) = 0, so
f ∈ I(V ). This means that I(S) = I(V ), and V (I(S)) ̸= S, meaning that S is
not a variety.

(d) What is the decomposition of V = V (x2 − y2) into irreducibles? Warning: The
answer depends on k! Solution. We have x2 − y2 = (x + y)(x − y), so we have
V = V (x+ y) ∪ V (x− y). However, if char k = 2, then x+ y = x− y, so in that
case we simply have V = V (x+ y).

2. Dummit and Foote #15.1.2 Show that each of the following rings are not Noethe-
rian by exhibiting an explicit infinite increasing chain of ideals:

(a) the ring of continuous real valued functions on [0, 1]
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Solution. Let

Ij = {functions f : R → [0, 1]|f(x) = 0 for all |x| > j}.

A direct check shows that this is an ideal, and we have

I1 ⊊ I2 ⊊ I3 ⊊ · · · .

(b) the ring of all functions from any infinite set X to Z/2Z.
Solution. Let a1, a2, . . . be distinct elements of X. Let

Ij = {functions f : X → Z/2Z|f(ai) = 0 for all i ≥ j}.

A direct check shows that this is an ideal, and we have

I1 ⊊ I2 ⊊ I3 ⊊ · · · .

3. Dummit and Foote #15.1.20 If f and g are irreducible polynomials in k[x, y] that
are not associates (do not divide each other), show that V ((f, g)) is either ∅ or a finite
set in k2. [Hint: If (f, g) ̸= (1), show (f, g) contains a nonzero polynomial in k[x] (and
similarly a nonzero polynomial in k[y]) by letting R = k[x], F = k(x), and applying
Gauss’s Lemma to show f and g are relatively prime in F [y].]

Solution. Use the hint. If (f, g) = (1), then V ((f, g)) = ∅. Otherwise, let R =
k[x], F = k(x), and consider f and g as elements of both R[y] = k[x, y] and F [y]. R is
a UFD, so by Gauss’ lemma, f and g are irreducible in F [y] since they are irreducible
in R[y]. Since f and g are irreducible nonassociates, they are relatively prime, and
since F [y] is a Euclidean domain we have fa+gb = 1 for some a, b ∈ F [y]. Multiplying
by a large enough power of x, we obtain fã+ gb̃ ∈ k[x] for some ã, b̃ ∈ k[x, y]; in other
words (f, g) contains an element p ∈ k[x]. By a similar argument, (f, g) contains an
element q ∈ k[y]. Every element of V ((f, g)) must be a root of p and q, so must be of
the form (a, b) with p(a) = q(b) = 0. Since p and q are one-variable polynomials, they
have finitely many roots, so V ((f, g)) is finite.

4. Dummit and Foote #15.2.2 Let I and J be ideals in the ring R. Prove the following
statements:

(a) If Ik ⊆ J for some k ≥ 1, then
√
I ⊆

√
J .

Solution. If x ∈
√
I, xn ∈ I for some n, so since Ik ⊆ J , xkn ∈ J . Therefore,

x ∈
√
J .

(b) If Ik ⊆ J ⊆ I for some k ≥ 1, then
√
I =

√
J .

Solution. Applying the previous part twice, we have
√
I ⊆

√
J ⊆

√
I, so√

I =
√
J .
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(c)
√
IJ =

√
I ∩ J =

√
I ∩

√
J .

Solution. If x ∈
√
IJ , xn ∈ IJ ⊆ I∩J for some n, so x ∈

√
I ∩ J . If y ∈

√
I ∩ J ,

yn ∈ I ∩ J for some n, so yn ∈ I and yn ∈ J , and x ∈
√
I ∩

√
J . If z ∈

√
I ∩

√
J ,

then for some m,n, zm ∈ I, zn ∈ J . Therefore, zm+n ∈ IJ , so z ∈
√
IJ .

(d)
√√

I =
√
I.

Solution. If x ∈
√√

I, for some m, xm ∈
√
I, so for some n, xmn = (xm)n ∈ I,

so x ∈
√
I. Conversely, every ideal is contained in its radical.

(e)
√
I +

√
J ⊆

√
I + J and

√
I + J =

√√
I +

√
J .

Solution. If z ∈
√
I+

√
J , we have z = x+y with x ∈

√
I, y ∈

√
J . For somem,n,

xm ∈ I, yn ∈ J , so (x+y)m+n = xm+n+xm+n−1y+ · · ·+xmyn+ · · ·+ym+n ∈ I+J
since every term has a factor of xm or yn. Thus,

√
I +

√
J ⊆

√
I + J . By part a,√√

I +
√
J ⊆

√
I + J . Conversely, I ⊆

√
I, J ⊆

√
J , so I + J ⊆

√
I +

√
J and√

I + J ⊆
√√

I +
√
J .

5. Dummit and Foote #15.2.3 Prove that the intersection of two radical ideals is again
a radical ideal.

Solution. Let I and J be radical ideals, and let xn ∈ I ∩ J . Then xn ∈ I, so since I
is radical, x ∈ I. Similarly, xn ∈ J , so since J is radical x ∈ J . Therefore, x ∈ I ∩ J ,
so I ∩ J is radical.

6. Dummit and Foote #15.2.5 If I = (xy, (x − y)z) ⊆ k[x, y, z] prove that
√
I =

(xy, xz, yz). For this ideal prove directly that V (I) = V (
√
I), that V (I) is not irre-

ducible, and that
√
I is not prime.

Solution. z2 · xy + xz(x− y)z = x2z2 ∈ I, so xz ∈
√
I. Since xy, (x− y)z ∈ I ⊆

√
I,

yz = xz − (x − y)z ∈
√
I. Now, (xy, xz, yz) contains all monomials with more than

one variable, so since xn, yn, zn /∈ I for any n, none of them are in
√
I either, so√

I = (xy, xz, yz).

We know that V (I) = V (
√
I) by the Nullstellensatz, but the problem asks to show it

directly. a = (x, y, z) ∈ V (
√
I) iff xy = xz = yz = 0 iff at least two of x, y, and z are

0. On the other hand, a = (x, y, z) ∈ V (I) iff xy = 0 and (x− y)z = 0 iff either x = 0
and −yz = 0 or y = 0 and xz = 0 iff at least two of x, y, and z are 0.

V (I) = {(x, 0, 0)}∪{(0, y, 0)}∪{(0, 0, z)} = V ((y, z))∪V ((x, z))∪V ((x, y)), and since
none of these varieties is contained in the others, V (I) is reducible. Finally,

√
I is not

prime since xy ∈
√
I but x, y /∈

√
I.
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