## Math 418, Spring 2024 - Homework 10

Due: Wednesday, April 31st, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Let $k$ be an algebraically closed field, and consider the polynomial ring $k[x, y]$.
(a) Let $V$ be the $x$-axis, i.e. $V=V(y)$. Prove that $V$ is irreducible. [Hint: Show a prime ideal is radical.]
Solution. If $I$ is a prime ideal, then if $a \cdots a=a^{n} \in I$, then $a$ or $a$ or $\ldots$ or $a$ is in $I$, so $a \in I$ and so $I$ is radical.
$y$ is irreducible since it is degree 1 , so it is prime since $k[x, y]$ is a UFD. Therefore, $(y)$ is a prime ideal, so by the bijection proved in class, $V(y)$ is irreducible.
(b) Prove that $V=V(x-y)$ is irreducible.

Solution. Similarly, $x-y$ is irreducible since it is degree 1 , so it is prime since $k[x, y]$ is a UFD. Therefore, $(x-y)$ is a prime ideal, so by the bijection proved in class, $V(x-y)$ is irreducible.
(c) Prove that $S=\left\{(a, a) \in k^{2} \mid a \neq 1\right\}$ is not an algebraic variety if $k=\mathbb{C}$.

Solution. Let $V=\left\{(a, a) \in k^{2} \mid a \in k\right\}$. then this is a variety with $I(V)=(x-y)$. If $S$ is a variety, we have $V(I(S))=S$. Let $f(x, y) \in I(S)$, and let $g(x)=f(x, x)$. Since $f \in I(V), f(a, a)=0$ for all $a \neq 0$, so $g(x)$ has roots at all $a \neq 0$. This is infinitely many roots and $g$ is a polynomial, so $g=0$, and so $f(0,0)=0$, so $f \in I(V)$. This means that $I(S)=I(V)$, and $V(I(S)) \neq S$, meaning that $S$ is not a variety.
(d) What is the decomposition of $V=V\left(x^{2}-y^{2}\right)$ into irreducibles? Warning: The answer depends on $k$ ! Solution. We have $x^{2}-y^{2}=(x+y)(x-y)$, so we have $V=V(x+y) \cup V(x-y)$. However, if char $k=2$, then $x+y=x-y$, so in that case we simply have $V=V(x+y)$.
2. Dummit and Foote \#15.1.2 Show that each of the following rings are not Noetherian by exhibiting an explicit infinite increasing chain of ideals:
(a) the ring of continuous real valued functions on $[0,1]$

Solution. Let

$$
I_{j}=\{\text { functions } f: \mathbb{R} \rightarrow[0,1] \mid f(x)=0 \text { for all }|x|>j\}
$$

A direct check shows that this is an ideal, and we have

$$
I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \cdots .
$$

(b) the ring of all functions from any infinite set $X$ to $\mathbb{Z} / 2 \mathbb{Z}$.

Solution. Let $a_{1}, a_{2}, \ldots$ be distinct elements of $X$. Let

$$
I_{j}=\left\{\text { functions } f: X \rightarrow \mathbb{Z} / 2 \mathbb{Z} \mid f\left(a_{i}\right)=0 \text { for all } i \geq j\right\} .
$$

A direct check shows that this is an ideal, and we have

$$
I_{1} \subsetneq I_{2} \subsetneq I_{3} \subsetneq \cdots .
$$

3. Dummit and Foote \#15.1.20 If $f$ and $g$ are irreducible polynomials in $k[x, y]$ that are not associates (do not divide each other), show that $V((f, g))$ is either $\emptyset$ or a finite set in $k^{2}$. [Hint: If $(f, g) \neq(1)$, show $(f, g)$ contains a nonzero polynomial in $k[x]$ (and similarly a nonzero polynomial in $k[y]$ ) by letting $R=k[x], F=k(x)$, and applying Gauss's Lemma to show $f$ and $g$ are relatively prime in $F[y]$.]
Solution. Use the hint. If $(f, g)=(1)$, then $V((f, g))=\emptyset$. Otherwise, let $R=$ $k[x], F=k(x)$, and consider $f$ and $g$ as elements of both $R[y]=k[x, y]$ and $F[y] . R$ is a UFD, so by Gauss' lemma, $f$ and $g$ are irreducible in $F[y]$ since they are irreducible in $R[y]$. Since $f$ and $g$ are irreducible nonassociates, they are relatively prime, and since $F[y]$ is a Euclidean domain we have $f a+g b=1$ for some $a, b \in F[y]$. Multiplying by a large enough power of $x$, we obtain $f \tilde{a}+g \tilde{b} \in k[x]$ for some $\tilde{a}, \tilde{b} \in k[x, y]$; in other words $(f, g)$ contains an element $p \in k[x]$. By a similar argument, $(f, g)$ contains an element $q \in k[y]$. Every element of $V((f, g))$ must be a root of $p$ and $q$, so must be of the form $(a, b)$ with $p(a)=q(b)=0$. Since $p$ and $q$ are one-variable polynomials, they have finitely many roots, so $V((f, g))$ is finite.
4. Dummit and Foote $\# \mathbf{1 5 . 2}$.2 Let $I$ and $J$ be ideals in the ring $R$. Prove the following statements:
(a) If $I^{k} \subseteq J$ for some $k \geq 1$, then $\sqrt{I} \subseteq \sqrt{J}$.

Solution. If $x \in \sqrt{I}, x^{n} \in I$ for some $n$, so since $I^{k} \subseteq J, x^{k n} \in J$. Therefore, $x \in \sqrt{J}$.
(b) If $I^{k} \subseteq J \subseteq I$ for some $k \geq 1$, then $\sqrt{I}=\sqrt{J}$.

Solution. Applying the previous part twice, we have $\sqrt{I} \subseteq \sqrt{J} \subseteq \sqrt{I}$, so $\sqrt{I}=\sqrt{J}$.
(c) $\sqrt{I J}=\sqrt{I \cap J}=\sqrt{I} \cap \sqrt{J}$.

Solution. If $x \in \sqrt{I J}, x^{n} \in I J \subseteq I \cap J$ for some $n$, so $x \in \sqrt{I \cap J}$. If $y \in \sqrt{I \cap J}$, $y^{n} \in I \cap J$ for some $n$, so $y^{n} \in I$ and $y^{n} \in J$, and $x \in \sqrt{I} \cap \sqrt{J}$. If $z \in \sqrt{I} \cap \sqrt{J}$, then for some $m, n, z^{m} \in I, z^{n} \in J$. Therefore, $z^{m+n} \in I J$, so $z \in \sqrt{I J}$.
(d) $\sqrt{\sqrt{I}}=\sqrt{I}$.

Solution. If $x \in \sqrt{\sqrt{I}}$, for some $m, x^{m} \in \sqrt{I}$, so for some $n, x^{m n}=\left(x^{m}\right)^{n} \in I$, so $x \in \sqrt{I}$. Conversely, every ideal is contained in its radical.
(e) $\sqrt{I}+\sqrt{J} \subseteq \sqrt{I+J}$ and $\sqrt{I+J}=\sqrt{\sqrt{I}+\sqrt{J}}$.

Solution. If $z \in \sqrt{I}+\sqrt{J}$, we have $z=x+y$ with $x \in \sqrt{I}, y \in \sqrt{J}$. For some $m, n$, $x^{m} \in I, y^{n} \in J$, so $(x+y)^{m+n}=x^{m+n}+x^{m+n-1} y+\cdots+x^{m} y^{n}+\cdots+y^{m+n} \in I+J$ since every term has a factor of $x^{m}$ or $y^{n}$. Thus, $\sqrt{I}+\sqrt{J} \subseteq \sqrt{I+J}$. By part a, $\sqrt{\sqrt{I}+\sqrt{J}} \subseteq \sqrt{I+J}$. Conversely, $I \subseteq \sqrt{I}, J \subseteq \sqrt{J}$, so $I+J \subseteq \sqrt{I}+\sqrt{J}$ and $\sqrt{I+J} \subseteq \sqrt{\sqrt{I}+\sqrt{J}}$.
5. Dummit and Foote \#15.2.3 Prove that the intersection of two radical ideals is again a radical ideal.
Solution. Let $I$ and $J$ be radical ideals, and let $x^{n} \in I \cap J$. Then $x^{n} \in I$, so since $I$ is radical, $x \in I$. Similarly, $x^{n} \in J$, so since $J$ is radical $x \in J$. Therefore, $x \in I \cap J$, so $I \cap J$ is radical.
6. Dummit and Foote \#15.2.5 If $I=(x y,(x-y) z) \subseteq k[x, y, z]$ prove that $\sqrt{I}=$ $(x y, x z, y z)$. For this ideal prove directly that $V(I)=V(\sqrt{I})$, that $V(I)$ is not irreducible, and that $\sqrt{I}$ is not prime.
Solution. $z^{2} \cdot x y+x z(x-y) z=x^{2} z^{2} \in I$, so $x z \in \sqrt{I}$. Since $x y,(x-y) z \in I \subseteq \sqrt{I}$, $y z=x z-(x-y) z \in \sqrt{I}$. Now, $(x y, x z, y z)$ contains all monomials with more than one variable, so since $x^{n}, y^{n}, z^{n} \notin I$ for any $n$, none of them are in $\sqrt{I}$ either, so $\sqrt{I}=(x y, x z, y z)$.
We know that $V(I)=V(\sqrt{I})$ by the Nullstellensatz, but the problem asks to show it directly. $a=(x, y, z) \in V(\sqrt{I})$ iff $x y=x z=y z=0$ iff at least two of $x, y$, and $z$ are 0 . On the other hand, $a=(x, y, z) \in V(I)$ iff $x y=0$ and $(x-y) z=0$ iff either $x=0$ and $-y z=0$ or $y=0$ and $x z=0$ iff at least two of $x, y$, and $z$ are 0 .
$V(I)=\{(x, 0,0)\} \cup\{(0, y, 0)\} \cup\{(0,0, z)\}=V((y, z)) \cup V((x, z)) \cup V((x, y))$, and since none of these varieties is contained in the others, $V(I)$ is reducible. Finally, $\sqrt{I}$ is not prime since $x y \in \sqrt{I}$ but $x, y \notin \sqrt{I}$.

