Math 418, Spring 2024 - Homework 1

Due: Wednesday, January 24th, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Dummit and Foote \#7.1.3
2. Dummit and Foote \#7.1.11
3. Dummit and Foote \#7.2.1
4. Dummit and Foote \#7.3.2
5. Dummit and Foote \#7.4.15
6. Consider $R=\mathbb{Z}[\sqrt{-5}]$ with the (non-Euclidean) norm $N: R \rightarrow \mathbb{Z}_{\geq 0}$ given by $N(a)=$ $|a|^{2}$. Note that $N(a \cdot b)=N(a) N(b)$.
(a) Prove that $a \in R$ is a unit if and only if $N(a)=1$. Find all the units in R.
(b) Recall that $r \in R$ is irreducible if whenever $r=a b$ then one of a or b is a unit. Use the norm to show that $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ are all irreducible elements of R
(c) Show that $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ are not unit multiples of one another, proving that R lacks unique factorization since $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.
7. Let R be an integral domain. Recall that g is a greatest common divisor of two elements $a, b \in R$ if g divides a and b, and if d divides a and b then d divides g.
(a) Show that if g and g^{\prime} are two gcds of $a, b \in R, g^{\prime}=u g$ for some unit u.
(b) Let $R=\mathbb{Z}[\sqrt{-5}]$. Prove that 6 and $2+2 \sqrt{-5}$ have no gcd. (Hint: Use the fact that 2 and $1+\sqrt{-5}$ are both common divisors of these elements)
