Math 418, Spring 2024 - Homework 1

Due: Wednesday, January 24th, at 9:00am via Gradescope.
Instructions: Students should complete and submit all problems. Textbook problems are from Dummit and Foote, Abstract Algebra, 3rd Edition. All assertions require proof, unless otherwise stated. Typesetting your homework using LaTeX is recommended, and will gain you 2 bonus points per assignment.

1. Dummit and Foote \#7.1.3: Let R be a ring with identity and let S be a subring of R containing the identity. Prove that if u is a unit in S then u is a unit in R. Show by example that the converse is false.
Solution: Since $1_{R} \in S$, and by uniqueness of identity, $1_{R}=1_{S}=1$ is the identity in S. If u is a unit in S, then there exists $v \in S$ such that $u v=v u=1$. Since $S \subseteq R$, $v \in R$, so u is a unit in R.

On the other hand, if $R=\mathbb{Q}, S=\mathbb{Z}$, then S is subring of R containing the identity. However, 2 is a unit in R but not S.
2. Dummit and Foote \#7.1.11: Prove that if R is an integral domain and $x^{2}=1$ for some $x \in R$ then $x= \pm 1$.
Solution: Since $x^{2}=1,(x+1)(x-1)=x^{2}-1=0$. Since x is an integral domain, either $x+1=0$ or $x-1=0$, so $x= \pm 1$.
3. Dummit and Foote \#7.2.1: Let $p(x)=2 x^{3}-3 x^{2}+4 x-5$ and let $q(x)=7 x^{3}+33 x-4$. In each of parts (a), (b) and (c) compute $p(x)+q(x)$ and $p(x) q(x)$ under the assumption that the coefficients of the two given polynomials are taken from the specified ring (where the integer coefficients are taken $\bmod n$ in parts (b) and (c)).
(a) $R=\mathbb{Z}$.

Solution: We simply do the usual polynomial addition and multiplication: $p(x)+$ $q(x)=9 x^{3}+3 x^{2}+37 x-9$ and $p(x) q(x)=14 x^{6}-21 x^{5}+94 x^{4}-142 x^{3}+144 x^{2}-$ $181 x+20$.
(b) $R=\mathbb{Z} / 2 \mathbb{Z}$.

Solution: We reduce the expressions from the first part modulo 2: $p(x)+q(x)=$ $x^{3}+x^{2}+x+1$ and $p(x) q(x)=x^{5}+x$.
(c) $R=\mathbb{Z} / 3 \mathbb{Z}$.

Solution: We reduce the expressions from the first part modulo 3: $p(x)+q(x)=x$ and $p(x) q(x)=2 x^{6}+x^{4}+2 x^{3}+x+2$.
4. Dummit and Foote $\# 7.3 .2$: Prove that the rings $\mathbb{Z}[x]$ and $\mathbb{Q}[x]$ are not isomorphic.

Proof. There are several approaches here. One way is to note that over an integral domain $R, \operatorname{deg}(p(x) q(x))=\operatorname{deg}(p(x))+\operatorname{deg}(q(x))$ (Proof: if $p(x)=a_{n} x^{n}+$ (lowerdegree terms) and $q(x)=b_{m} x^{m}+$ (lower-degree terms), then $p(x) q(x)=a_{n} b_{m} x^{n+m}+$ (lower-degree terms), and this coefficient is nonzero since R is an integral domain). Therefore, since all polynomials have nonnegative degrees, all units in $R[x]$ are units of R. In \mathbb{Z} the units are $\{ \pm 1\}$ while in $\mathbb{Q}[x]$ the units are $\mathbb{Q} \backslash\{0\}$. These have different cardinalities, so there cannot be an isomorphism $\mathbb{Z}[x] \rightarrow \mathbb{Q}[x]$ since such a map would need to biject the sets of units.
5. Dummit and Foote \#7.4.15: Let $x^{2}+x+1$ be an element of the polynomial ring $E=$ $\mathbb{F}_{2}[x]$ and use the bar notation to denote passage to the quotient ring $\mathbb{F}_{2}[x] /\left(x^{2}+x+1\right)$.
(a) Prove that E has 4 elements: $\overline{0}, \overline{1}, \bar{x}$, and $\overline{x+1}$.

Proof. If $e \in \bar{E}$, then e can be written as a degree-one polynomial since in \bar{E}, $x^{2}=x+1, x^{3}=x(x+1)=x^{2}+x=1$, and so $x^{3 k}=1, x^{3 k+1}=x, x^{3 k+2}=x+1$. Therefore, $E=\{\overline{0}, \overline{1}, \bar{x}, \overline{x+1}\}$ since these are the only degree-one polynomials over \mathbb{F}_{2}. On the other hand, these elements are distinct since their pairwise differences in E all have degree ≤ 1, so cannot be multiples of $x^{2}+x+1$ (since \mathbb{F}_{2} is an integral domain; see reasoning from Problem 4).
(b) Write out the 4×4 addition table for E and deduce that the additive group E is isomorphic to the Klein 4-group.
Solution: Addition table below. This is a group of order 4 which is not cyclic, so it is the Klein-4 group.

+	$\overline{0}$	$\overline{1}$	\bar{x}	$\overline{x+1}$
$\overline{0}$	$\overline{0}$	$\overline{1}$	\bar{x}	$\overline{x+1}$
$\overline{1}$	$\overline{1}$	$\overline{0}$	$\overline{x+1}$	\bar{x}
\bar{x}	\bar{x}	$\overline{x+1}$	$\overline{0}$	$\overline{1}$
$\overline{x+1}$	$\overline{x+1}$	\bar{x}	$\overline{1}$	$\overline{0}$

(c) Write out the 4×4 multiplication table for E and prove that E^{\times}is isomorphic to the cyclic group of order 3. Deduce that E is a field.
Solution: Multiplication table below. Note that $\bar{E} \backslash\{\overline{0}\}$ consists of 3 elements, with (multiplicative) identity $\overline{1}$, and both \bar{x} and $\overline{x+1}$ have inverses. Therefore, $\bar{E}^{\times}=\bar{E} \backslash\{\overline{0}\}$ is the cyclic group of order 3, and since every element of $\bar{E} \backslash\{\overline{0}\}$ is a unit, \bar{E} is a field. [In fact, the multiplicative group of a finite field is always cyclic.]

$*$	$\overline{0}$	$\overline{1}$	\bar{x}	$\overline{x+1}$
$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$	$\overline{0}$
$\overline{1}$	$\overline{0}$	$\overline{1}$	\bar{x}	$\overline{x+1}$
\bar{x}	$\overline{0}$	\bar{x}	$\overline{x+1}$	$\overline{1}$
$\overline{x+1}$	$\overline{0}$	$\overline{x+1}$	$\overline{1}$	\bar{x}

6. Consider $R=\mathbb{Z}[\sqrt{-5}]$ with the (non-Euclidean) norm $N: R \rightarrow \mathbb{Z}_{\geq 0}$ given by $N(a)=$ $|a|^{2}$. Note that $N(a \cdot b)=N(a) N(b)$.
(a) Prove that $a \in R$ is a unit if and only if $N(a)=1$. Find all the units in R.

Proof. Suppose a is a unit. Then

$$
1=N(1)=N\left(a \cdot a^{-1}\right)=N(a) N\left(a^{-1}\right)
$$

Since $N(a)$ and $N\left(a^{-1}\right)$ are positive integers, the equality above forces $N(a)=1$. Conversely suppose $N(a)=1$. If $a=x+y \sqrt{-5}$, then

$$
N(a)=x^{2}+5 y^{2}=1
$$

This forces $y=0$ and $x= \pm 1$. So a is a unit. In particular, the same argument shows that the units of R are $\{1,-1\}$.
(b) Recall that $r \in R$ is irreducible if whenever $r=a b$ then one of a or b is a unit. Use the norm to show that $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ are all irreducible elements of R

Proof. Consider $2 \in R$. Suppose $2=\left(x_{1}+y_{1} \sqrt{-5}\right)\left(x_{2}+y_{2} \sqrt{-5}\right)$. Taking norms both sides

$$
4=\left(x_{1}^{2}+5 y_{1}^{2}\right)\left(x_{2}^{2}+5 y_{2}^{2}\right)=x_{1}^{2} x_{2}^{2}+5(\cdots)
$$

This has solution $x_{1}= \pm 1 ; y_{1}=0 ; x_{2}= \pm 2 ; y_{2}=0$ or vice versa, showing that 2 is irreducible.
Next, consider $1+\sqrt{-5}$. Suppose $1+\sqrt{-5}=\left(x_{1}+y_{1} \sqrt{-5}\right)\left(x_{2}+y_{2} \sqrt{-5}\right)$. Taking norms both sides

$$
6=\left(x_{1}^{2}+5 y_{1}^{2}\right)\left(x_{2}^{2}+5 y_{2}^{2}\right)=x_{1}^{2} x_{2}^{2}+5\left(x_{1}^{2} y_{2}^{2}+x_{2}^{2} y_{1}^{2}+5 y_{1}^{2} y_{2}^{2}\right) .
$$

Since 6 is squarefree, the only solutions are $x_{1}= \pm 1 ; y_{1}=0 ; x_{2}= \pm 1 ; y_{2}= \pm 1$ or vice versa, showing that $1+\sqrt{-5}$ is irreducible.
Similar arguments work for the other two cases.
(c) Show that $2,3,1+\sqrt{-5}$, and $1-\sqrt{-5}$ are not unit multiples of one another, proving that R lacks unique factorization since $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$.

Proof. By part (a) the only units are ± 1, so the first statement follows by inspection. The example given shows that R lacks unique factorization since both factorizations are into irreducibles, but the two factorizations are not the same up to rearrangement and/or units.
7. Let R be an integral domain. Recall that g is a greatest common divisor of two elements $a, b \in R$ if g divides a and b, and if d divides a and b then d divides g.
(a) Show that if g and g^{\prime} are two gcds of $a, b \in R, g^{\prime}=u g$ for some unit u.

Proof. Since g and g^{\prime} are both gcds of a and b, they divide each other; say $g=u g^{\prime}$, $g^{\prime}=v g$. Then $u v=v u=1$, so u and v are inverses and therefore units in R.
(b) Let $R=\mathbb{Z}[\sqrt{-5}]$. Prove that 6 and $2+2 \sqrt{-5}$ have no gcd. (Hint: Use the fact that 2 and $1+\sqrt{-5}$ are both common divisors of these elements)

Proof. We have $6=2 \cdot 3=(1+\sqrt{-5})(1-\sqrt{-5})$ and $2+2 \sqrt{-5}=2(1+\sqrt{-5})$, so 2 and $1+\sqrt{-5}$ are common divisors of 6 and $2+2 \sqrt{-5}$. If g is a gcd of 6 and $2+2 \sqrt{-5}$, then both 2 and $1+\sqrt{-5}$ divide g. Since $N(a b)=N(a) N(b)$ for all $a, b \in \mathbb{Z}[\sqrt{-5}]$, we have $4=N(2) \mid N(g)$ and $6=N(1+\sqrt{5}) \mid N(g)$, and also $N(g) \mid N(6)=36$ and $N(g) \mid N(2+2 \sqrt{-5})=24$. This means that $N(g)=12$, but this is impossible since a simple check shows that there are no nonnegative integers a and b such that $|a+b \sqrt{-5}|=a^{2}+5 b^{2}=12$.

