
Solutions to Math 418 Final Exam — May 7, 2024

1. (25 points) Let f(x) = x3 + px+ q ∈ Z[x], where p ≡ 2 mod 6 and q ≡ 1 mod 6.

(a) (10 points) Prove that f(x) is irreducible.

The reduction modulo 3 of f is f = x3 + 2x + 1 ∈ F3[x]. Since this is a cubic, it either has a
root or is irreducible. But we can plug in 0, 1, and 2 to see that f(0) = f(1) = f(2) = 1 ̸= 0, so
f and f are irreducible.

(b) (15 points) Prove that the Galois group for f over Q is S3. [Hint: consider the discriminant
D = −4p3 − 27q2 of f taken modulo 8.]

Since f is irreducible, its Galois group Gal(f) is a transitive subgroup of S3, so Gal(f) = A3 or
S3. It equals the former if

√
D ∈ Q, and the latter otherwise. By Gauss’ Lemma,

√
D ∈ Q if

and only if
√
D ∈ Z.

Consider the residue of D modulo 8. Since p is even, so is p3, so −4p3 is a multiple of 8. Since q is
odd, we must have q2 ≡ 1 mod 8 (check the four cases), so −27q2 ≡ −3 ≡ 5 mod 8. However,
5 is not a square modulo 8, so

√
D /∈ Z, and therefore Gal(f) = S3.

2. (20 points) Let I = (x2, y2 − x) ⊆ C[x, y]
(a) (10 points) Use the affine Nullstellensatz to determine I(V (I)), where V (I) denotes the affine

variety corresponding to I.

Clearly, I ⊊ C[x, y] since I contains no nonzero constants. By the affine Nullstellensatz,
I(V (I)) =

√
I, so we only need to compute

√
I. We have x2 ∈ I, so x ∈

√
I. Since we

also have y2 − x ∈
√
I, y2 = y2 − x + x ∈

√
I, and since

√
I is a radical ideal, y ∈

√
I (or just

notice directly that y4 = x2 + (x+ y2)(y2 − x) ∈ I).

Now we have (x, y) ⊆
√
I, and since (x, y) is a maximal ideal, it is radical, so I(V (I)) =

√
I =

(x, y).

(b) (10 points) Prove (rigorously) that I is not a homogeneous ideal, but that I(V (I)) is a homoge-
neous ideal.

By part a, I(V (I)) = (x, y), and since the generators are homogeneous, so is the ideal.

On the other hand, we show that I is not homogeneous by showing that x ∈ I, since homoge-
neous ideals contain the homogeneous components of their generators. Suppose we have a linear
combination h = fx2 + g(y2 − x), f, g ∈ C[x, y]. Every term in fx2 is a multiple of x2, so the
coefficient of y2 in h is the constant term c of g and the coefficient of x in h is −c. If h = x, then
we would have both c = 0 and c = −1, which is a contradiction. Therefore, x /∈ I and so I is
not a homogeneous ideal.

3. (40 points) Let K = Q( 5
√
2, ζ5) be the splitting field of x5 − 2 over Q, and let G = Gal(K/Q).

(a) (5 points) Determine the degree [K : Q].

We have K = Q( 5
√
2, ζ5), and because the degrees [Q( 5

√
2 : Q] = 5 and [Q(ζ5 : Q] = 4 are

coprime, we have 5|[K : Q], 4|[K : Q], and [K : Q] ≤ [Q( 5
√
2 : Q][Q(ζ5 : Q] = 20, so [K : Q] = 20.

(b) (15 points) Determine G up to isomorphism using generators and relations. (i.e. find a set of
generators for G, determine their orders and any other relations needed to determine the group)

Let σ, τ be the automorphisms σ( 5
√
2) = ζ5

5
√
2, σ(ζ5) = ζ5, τ(

5
√
2) = 5

√
2, τ(ζ5) = ζ25 . Notice that

τ has order 4, since τ2(ζ5) = ζ45 ̸= ζ5, and additionally, σ has order 5. Therefore, G = ⟨σ, τ⟩. We
have the orders of both generators, and so we just need their commutation relation since then
every element of G will have a unique expression σaτ b, 0 ≤ a < 5, 0 ≤ b < 4. We have τσ( 5

√
2) =
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τ(ζ5
5
√
2) = ζ25

5
√
2, and τσ(ζ5) = τ(ζ5) = ζ25 . On the other hand, σaτ( 5

√
2) = σa( 5

√
2) = ζa5

5
√
2,

and σaτ(ζ5) = σa(ζ25 ) = ζ25 . Matching these outputs, τσ = σ2τ , so

G = ⟨σ, τ |σ5 = τ4 = 1, τσ = σ2τ⟩.

(c) (10 points) Determine the subgroup of G fixing the intermediate field E = Q(ζ5 + ζ−1
5 ), and

use this subgroup to determine whether E is Galois over Q. (You must use the Fundamental
Theorem of Galois Theory for this problem).

[E : Q] = 2 since ζ5 + ζ−1
5 is a root of the polynomial x2 + x + 1 ∈ Q[x], so [E : Q] = 2. By

the Tower Law, [K : E] = 10, so H := Gal(K/E) must have order 10 / index 2 in G. Now,
σ(ζ5+ζ−1

5 ) = ζ5+ζ−1
5 , and τ(ζ5+ζ−1

5 ) = ζ25+ζ5, τ
2(ζ5+ζ−1

5 ) = ζ−1
5 +ζ5. Therefore, H = ⟨σ, τ2⟩.

We claim that H is normal in G, and, consequently, that E is Galois over H. This is apparent
since H is index 2 in G and all index-2 subgroups are normal. Alternatively, we can show it
directly. Using the relation τσ = σ2τ , we have τστ−1 = σ2 ∈ H, σσσ−1 = σ ∈ H, ττ2τ−1 =
τ ∈ H, and στ2σ−1 = τ2σ3 ∈ H. (The last equality follows since στ2 = σ6τ2 = τσ3τ = τσ8τ =
τ2σ4).

(d) (10 points) Determine the subgroup of G fixing the intermediate field F = Q( 5
√
2, ζ5 + ζ−1

5 ), and
use this subgroup to determine whether F is Galois over Q. (You must use the Fundamental
Theorem of Galois Theory for this problem).

By the Tower Law, [F : Q] = [F : E][E : Q] = 2 · 5 = 10 since ζ5 + ζ−1
5 /∈ Q( 5

√
2). (Alternatively,

we can note that [K : F ] = 2 since ζ5 is a root of the polynomial x2−(ζ5+ζ−1
5 )x+1). This means

that J := Gal(K/F ) has order 2. Since τ2( 5
√
2) = 5

√
2, τ2(ζ5 + ζ−1

5 ) = τ(ζ25 + ζ35 ) = ζ−1
5 + ζ5, we

have J = ⟨τ2⟩.
Now, στ2σ−1 = σ16τ2σ−1 = τ2σ3 /∈ ⟨τ2⟩, so ⟨τ2⟩ is not normal in G, and therefore F is not
Galois over Q.

4. (20 points) Please complete TWO of the following problems, some of which are on the following page.
If you have work on more than two problems, you must CLEARLY specify which two problems
you would like graded; otherwise, the first two will be graded

I would like the following two parts of this problem graded:

(a) (10 points) Prove that every α ∈ Fpn \ Fp satisfies the equation

αpn−3 + αpn−4 + · · ·+ α+ 1 = −α−1.

Since α ∈ Fpn , which is the splitting field of xp
n − x (see Dummit and Foote, p.549-550), α is a

root of that polynomial. Since α /∈ Fp, α ̸= 0, 1, so we can divide by x(x − 1), and thus α is a
root of xp

n−2 + xp
n−3 + · · ·+ x+ 1. Plugging in α, moving the 1 to the other side, and dividing

by α gives the result.

(b) (10 points) Let f(x) = x3 + 2x + 2 ∈ Q[x] (you may take for granted that f is irreducible). Let
θ be a root of f(x) in some extension field. Determine (1 + θ)−1 in Q(θ) as a polynomial in θ.
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We have θ3 + 2θ + 2 = 0, so if (1 + θ)−1 = aθ2 + bθ + c, then

1 = (1 + θ)(aθ2 + bθ + c)

= aθ3 + (a+ b)θ2 + (b+ c)θ + c

= a(−2θ − 2) + (a+ b)θ2 + (b+ c)θ + c

= (a+ b)θ2 + (−2a+ b+ c)θ + c− 2a.

Since 1, θ, θ2 form a basis for Q(θ)/Q, we must have a+ b = 0,−2a+ b+ c = 0, c− 2a = 1, and
this yields a = 1, b = −1, c = 3, so (1 + θ)−1 = θ2 − θ + 3.

(c) (10 points) Let f ∈ C[x1, . . . , xn] be irreducible. Prove that the affine variety V ((f)) is irreducible.

First note that C[x1, . . . , xn] is a UFD since C is a UFD and a ring R is a UFD if and only if
R[x] is a UFD. An element r in a UFD is irreducible if and only if it is prime, and an element r
in an integral domain is prime if and only if (r) is a prime ideal. Combining these facts, (f) is a
prime ideal. Therefore, V ((f)) is an irreducible variety by a proposition proved in lecture 37.

(d) (10 points) Let R be a Euclidean domain, with norm N : R → Z≥0. Let m be the minimum
integer in the set of norms of nonzero elements of R i.e.

m = min{N(a)|a ∈ R \ {0}}.

Prove that every nonzero element of R of norm m is a unit.

Let a ∈ R \ {0} such that N(a) = m. Since R is a Euclidean domain, there exist q, r ∈ R such
that 1 = qa+ r and either r = 0 or N(r) < N(a). Since no nonzero element of r has norm less
than N(a), r = 0, so 1 = qa, and so a is a unit.


