Announcement:
(1) Quiz this Friday (in class)
(2) Midterm next Wednesday
(3) See policy email from Andy.

The Gale-Shapley Algorithm continued.
Recall the Algorithm:
Input: Preference rankings by all children and puppies
Iteration: Each puppy chooses the highest child on its list who hasn't rejected it.
if each puppy chooses a different child:
stop and use the resulting matching
else each child says maybe to the most attractive proposal received and rejects all the others. Repeat iteration.

The 3.2.18: The Gale-Shapley Algorithm always produce a stable matching.

$$
\left(\begin{array}{l}
\text { No unstable pairs }(x, y) \\
\text { st } y \text { is higher than } x^{\prime} \text { s match } \\
\text { on } x^{\prime} \text { list and vice versa }
\end{array}\right)
$$

Pf: Need 3 things: (1) Algorithm terminates
(2) result is a matching
(3) no unstable pairs
(1): There are n^{2} total possible pairs (child, pappy), each iteration of Algorithm decreases that number since either pupples get rejected or a matching is formed.

The Algorithm stops when the \# becomes 0 .
(2): Suppose not, we would have a child who has rejected all remaining unmatched puppies.

This is impossible since if a child has rejected a puppy, it means the child says "maybe" to sone other puppy. After that, the child will keep saying "maybe" to the sane puppy until either
a) the child says "yes" to the "maybe" puppy
or
b) Sone other puppy higher on the list chooses the child, in which case the child says "maybe" to new puppy.
Either way, the child says "maybe" or "Yes" to a puppy. Impossible to reject all.
(3). Suppose there's an unstable pair

$$
\begin{array}{rl}
\text { Child } & \text { puppy } \\
& (b>a) \\
x \longrightarrow b & a \\
y \longrightarrow & (x>y)
\end{array}
$$

Q : Has b chosen x ?
If yes, then x either said "yes" to b (didn't happen) or said "maybe" to some puppy higher than b.
Notice that the "maybe" puppy will only rise in x 's preference list and thus impossible for x to match m / a

If No, then a must have got to x first and matched. In this scenario, b chooses Y, which won't happen before choosing x Impossible again.

Example of Algorithm

$(d>b>c>a)$	w	${ }^{\prime \prime \prime}$	$(w>x>y>z)$
$(c>a>b>d)$	x	b	$(w>y>x>z)$
$(a>b>c>d)$	y	c	$(y>z>w>x)$
$(b>c>d>a)$	z	d	$(y>x>z>w)$

First iteration: a, b choose $w ; c, d$ choose y.

$$
w \text { rejects a ; y rejects } d \text {. }
$$

Second iteration: b choose w; a, d choose x, c choose y $x \begin{gathered}\text { rejects } d \\ \text { maybe a }\end{gathered}$

Third iteration: $b \leftrightarrow w ; a \leftrightarrow x, c \leftrightarrow y, d \leftrightarrow z$ matched!
If children choose puppies, then

Children ends up with pupples higher on their lists!
What does this tell us?
Go after your most preferable choice is better than waiting to be chosen.
3.3 Matchings in General Graphs.

Recall Def: A perfect matching of G is a spanning subgraph such that each vertex has deg $=1$.

Q! when does a graph G have a perfect matching?
Need one move definition:
Def: For $S \subseteq V(G)$, define $o(G-S)$ to be the \# of vertices odd conpounts of $G-S$.

First Observation: If $|V(G)|$ is odd, impossible to have a perfect matting.
The 3.3.3 (Tate, 1947)
G has a perfect matching $\Leftrightarrow O(G-S) \leqslant|S|$ for all $S \subseteq V[G)$ side note: First observation is the case $s=\phi$.
Example:

$$
p f: \Rightarrow \text { : }
$$

Each odd component must be matched to a different vertex in S.
E : When we add an edge to $G, O(G-S)$ does not increase.
Moreover, if $G^{\prime}=G+e, G$ has no perfect matting $\Rightarrow G$ has no perfect matting.
Therefore if the statement fails, can find G sit
(1) $o(G-S) \leqslant|S|$ for all $s \subseteq V(G)$
(2) G has no perfect matching
(3) Adding any edge would have a perfect matching.

We'll show that G actual has a perfect matching.
Let $U \leq V(G)$ be the set of vertices $w /$ deg $|V(G)|-1$.
Case 1: G-U consists of disjoint union of complete graphs.

A matching is guaranteed since each component of $G-U$ is complete graph we can get a matching of all / all but I vertices in the component. The single (even / odd)
vertex cam be matched with anyone in U.
Case 2: G-U is not disjoint union of complete graphs.
In a component, we can find x, z not connected but both comencted toy.

Since $Y \notin U$, can find w st $(w, y) \notin E(G)$

Let $G^{\prime}=G+Y_{N}, G^{\prime \prime}=G+{ }^{x}, z$, by hypothesis (3), $G^{\prime}, G^{\prime \prime}$ has perfect matching $M_{1}{ }^{w}, M_{2}$.

Let $F=M_{1} \Delta M_{2}$ be the symuntuic difference, In particular, $x z$ and $y w \in F$.

$$
F=\left\{e \in M_{1}: e \notin \mu_{2}\right\} \cup\left\{e \in M_{2}: e \notin M_{1}\right\} .
$$

Since every vertex in M_{1} or M_{2} has deg 1 , every vertex in F has deg 0002 .

If $x z, y w$ in different cycles, choose M_{1} in C_{1} and M_{2} in others. $C_{1} C_{2}$

If $x z$, $y w$ in sane cycle. we use $y z$ and M_{2} 's in the
 rishi half and M_{1}^{\prime} s in the left half to get a perfect matching without using $x z$ or y w

For the other cycles use M_{1} or M_{2}

