

Problem §3.1: 2: Determine which characteristics of an algorithm described in the text the following procedures have and which they lack.

- (a)

```
procedure double(n: positive integer)
  while n > 0
    n := 2n
```
- (b)

```
procedure divide(n: positive integer)
  while n >= 0
    m := 1/n
    n := n-1
```
- (c)

```
procedure sum(n: positive integer)
  sum := 0
  while i < 10
    sum := sum + i
```
- (d)

```
procedure choose(a,b: integers)
  x := either a or b
```

Problem §3.1: 24: Describe an algorithm that determines whether a function from a finite set to another finite set is one-to-one.

Problem §3.1: 52(a,d): Use the greedy algorithm to make change using quarters, dimes, nickels, and pennies for

- (a) 87 cents.
- (d) 33 cents.

Problem §3.1: 54(a,d): Use the greedy algorithm to make change using quarters, dimes, and pennies (but no nickels) for

- (a) 87 cents.
- (d) 33 cents.

Problem §3.2: 2(a,b,e,f): Determine whether each of these functions is $O(x^2)$:

- (a) $f(x) = 17x + 11$.
- (b) $f(x) = x^2 + 1000$.
- (e) $f(x) = 2^x$.
- (f) $f(x) = \lfloor x \rfloor \cdot \lceil x \rceil$.

Problem §3.2: 8: Find the least integer n such that $f(x)$ is $O(x^n)$ for each of these functions.

- (a) $f(x) = 2x^2 + x^3 \log x$.

- (b) $f(x) = 3x^5 + (\log x)^4$.
- (c) $f(x) = (x^4 + x^2 + 1)/(x^4 + 1)$.
- (d) $f(x) = (x^3 + 5 \log x)/(x^4 + 1)$.

Problem §3.2: 17: Suppose that $f(x)$, $g(x)$, and $h(x)$ are functions such that $f(x)$ is $O(g(x))$ and $g(x)$ is $O(h(x))$. Show that $f(x)$ is $O(h(x))$.

Problem §3.2: 26: Give a big- O estimate for each of these functions. For the function g in your estimate $f(x)$ is $O(g(x))$, use a simple function g of the smallest order.

- (a) $f(x) = (n^3 + n^2 \log n)(\log n + 1) + (17 \log n + 19)(n^3 + 2)$.
- (b) $f(x) = (2^n + n^2)(n^3 + 3^n)$.
- (c) $f(x) = (n^n + n^{2n} + 5^n)(n! + 5^n)$.

Problem §3.2: 28(a,b,c,d): Determine whether each of the following functions is $\Omega(x)$ and whether it is $\Theta(x)$.

- (a) $f(x) = 10$.
- (b) $f(x) = 3x + 7$.
- (c) $f(x) = x^2 + x + 1$.
- (d) $f(x) = 5 \log x$.

Problem Extra: Explain what it means for a function to be

- (a) $O(1)$.
- (b) $\Omega(1)$.
- (c) $\Theta(1)$.

Problem §5.1: 4: Let $P(n)$ be the statement that $1^3 + 2^3 + \dots + n^3 = (n(n+1)/2)^2$ for the positive integer n .

- (a) What is the statement $P(1)$?
- (b) Show that $P(1)$ is true, completing the basis step of the proof.
- (c) What is the inductive hypothesis?
- (d) What do you need to prove in the inductive step?
- (e) Complete the inductive step, identifying where you use the inductive hypothesis.
- (f) Explain why these steps show that this formula is true whenever n is a positive integer.

Problem §5.1: 6: Prove that $1 \cdot 1! + 2 \cdot 2! + \cdots + n \cdot n! = (n+1)! - 1$ whenever n is a positive integer.

Problem §5.1: 8: Prove that $2 - 2 \cdot 7 + 2 \cdot 7^2 - \cdots + 2(-7)^n = (1 - (-7)^{n+1})/4$ whenever n is a nonnegative integer.