

Problem §2.3: 2: Determine whether f is a function from \mathbb{Z} to \mathbb{R} if

- (a) $f(n) = \pm n$
- (b) $f(n) = \sqrt{n^2 + 1}$
- (c) $f(n) = \frac{1}{n^2 - 4}$

Problem §2.3: 12: Determine whether each of these functions from \mathbb{Z} to \mathbb{Z} is one-to-one.

- (a) $f(n) = n - 1$.
- (b) $f(n) = n^2 + 1$.
- (c) $f(n) = n^3$.
- (d) $f(n) = \lceil n/2 \rceil$.

Problem §2.3: 14(a,b,c,d): Determine whether $f : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}$ is onto if

- (a) $f(m, n) = 2m - n$.
- (b) $f(m, n) = m^2 - n^2$.
- (c) $f(m, n) = m + n + 1$.
- (d) $f(m, n) = |m| - |n|$.

Problem §2.3: 20: Give an example of a function from \mathbb{N} to \mathbb{N} that is

- (a) one-to-one but not onto.
- (b) onto but not one-to-one.
- (c) both onto and one-to-one (but not the identity function).
- (d) neither one-to-one nor onto.

Problem §2.3: 22(a,b): Determine whether each of these functions is a bijection from \mathbb{R} to \mathbb{R} .

- (a) $f(x) = -3x + 4$.
- (b) $f(x) = -3x^2 + 7$.

Problem §2.3: 36: Find $f \circ g$ and $g \circ f$ where $f(x) = x^2 + 1$ and $g(x) = x + 2$ are functions from \mathbb{R} to \mathbb{R} .

Problem §2.3: 39: Show that the function $f(x) = ax + b$ from \mathbb{R} to \mathbb{R} is invertible, where a and b are constants, with $a \neq 0$, and find the inverse of f .

Problem §2.3: 40(a): Let f be a function from the set A to the set B . Let S and T be subsets of A . Show that $f(S \cup T) = f(S) \cup f(T)$.

Problem §2.3: 44(b): Let f be a function from A to B . Let S and T be subsets of B . Show that $f^{-1}(S \cap T) = f^{-1}(S) \cap f^{-1}(T)$.