
Math 213, Fall 2024 Practice Problems 2

Note: the distribution of these problems may not match the distribution of exam topics.

Problem §6.3 - 22(d,e,f): How many permutations of the letters ABCDEFGH contain

(d) the strings AB, DE, and GH?

(e) the strings CAB and BED?

(f) the strings BCA and ABF?

Solution. The trick is to treat the strings specified in each part as “superletters” and then to count
arrangements of the set of superletters and remaining ordinary letters.

(d) Here, we have three superletters: AB, DE, and GH. This leaves two remaining ordinary
letters: C and F . So we’re simply counting the number of ways to permute five items, which
is by definition P (5, 5) = 5! = 120.

(e) On first glance, it might seem like we’re arranging two superletters (CAB and BED) and three
ordinary letters (F,G, and H). But because the letter B appears in both superletters, the
only way for a string to contain both CAB and BED is for it to contain the longer substring
CABED. As such, we’re really permuting four objects: CABED, F , G, and H. By definition,
we can do so in P (4, 4) = 4! = 24 ways.

(f) Notice that the letters A and B appear in both the string BCA and ABF . In BCA, the letter
B is followed by C. But in ABF , it is followed by F . Because it’s impossible for B to be
followed by both C and F in a single string, there are no permutations of ABCDEFGH that
contain both BCA and ABF as substrings.

Problem §6.4 - 20: Suppose that k and n are integers with 1 ≤ k < n. Prove the hexagon
identity (

n− 1

k − 1

)(
n

k + 1

)(
n+ 1

k

)
=

(
n− 1

k

)(
n

k − 1

)(
n+ 1

k + 1

)
which relates terms in Pascal’s triangle that form a hexagon.

Solution. This problem is really just asking you to get your hands dirty with the definition of a
binomial coefficient and some algebra. Diving right in, we can compute(

n− 1

k − 1

)(
n

k + 1

)(
n+ 1

k

)
=

(n− 1)!

(k − 1)!(n− k)!
· n!

(k + 1)!(n− k − 1)!
· (n+ 1)!

k!(n+ 1− k)!

=
(n− 1)!

k!(n− k − 1)!
· n!

(n− k + 1)!(k − 1)!
· (n+ 1)!

(k + 1)!(n− k)!

=

(
n− 1

k

)(
n

k − 1

)(
n+ 1

k + 1

)
where all we really did was rearrange factorials to get the desired binomial coefficients.

Problem §6.5 - 16(a,d): How many solutions are there to the equation

x1 + x2 + x3 + x4 + x5 + x6 = 29,

where xi, for i = 1, 2, 3, 4, 5, 6, is a non-negative integer such that

(a) xi > 1 for i = 1, 2, 3, 4, 5, 6?
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(d) x1 < 8 and x2 > 8?

Solution. Like in lecture, we can think about this using the stars and bars model. Recall that we
can write 29 as a summation 1+ · · ·+1 of 29 “1”s. We can think about placing bars between these
“1”s to separate them into six “cells”s that represent the xi. Then, this is really asking us to count
the number of ways we can arrange 29 stars and 5 bars (where the stars represent the copies of “1”
and the bars represent divisions between the xi), subject to various conditions.

(a) If we require that at least xi ≥ 2, this “uses up” 12 of the 29 copies of “1”. So this reduces to
the problem of counting the number of solutions to the equation

x′
1 + x′

2 + x′
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4 + x′
5 + x′

6 = 29− 12 = 17

where each x′
i ≥ 0. We know that this is given by((
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= 26, 334.

(d) We can start by counting the number of solutions that meet the second condition, x2 ≥ 9.
Similarly to (a), this condition “uses up” 9 of the 29 copies of “1”, so this reduces to counting
the number of solutions to the equation
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where each x′
i ≥ 0. We know that this is((
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= 53, 130.

But this overcounts, because some of these solutions don’t meet the first condition. To count
the number of solutions that violate this condition, i.e. where x1 ≥ 8, we can observe that in
these solutions an additional eight copies of “1” are used up, so we’re really counting solutions
to the equation
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= 6, 188.

Hence,(
number of solutions with
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)
=
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−
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=
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= 53, 130− 6, 188

= 46, 942

Problem §6.5 - 30: Howmany different strings can be made from the letters inMISSISSIPPI,
using all the letters?

Solution. The word MISSISSIPPI contains 11 letters - one “M”, four “I”s, four “S”s, and two
“P”s. Hence, we can apply the theorem for counting arrangements of a set of objects where some
objects are identical. Doing so, we find that we can make

11!

1!4!4!2!
= 34, 650

distinct strings.
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Problem §7.1 - 18: What is the probability that a five-card poker hand contains a straight
flush, that is, five cards of the same suit of consecutive kinds?

Solution. We want to compute the probability of the event E that a hand contains five cards of
the same suit of consecutive kinds (note that now E contains less outcomes than in the previous
question, since we’re excluding hands with cards that are all of the same suit but not consecutive
kinds). To create a straight flush, we can choose the suit of the cards in

(
4
1

)
= 4 ways. Because the

cards have to be consecutive, the hand is then fully determined once we choose the lowest card in
the hand. This lowest card could anything from an ace up through a 9. Hence, there are

(
10
1

)
= 10

ways to choose the lowest card in the hand and therefore

p(E) =
|E|
|S|

=
4 · 10(

52
5

) =
4 · 10 · 5! · 47!

52!
=

1

64974
≈ 0.0015%

Problem §7.1 - 24(a): Find the probability of winning a lottery by selecting the correct six
integers, where the order in which these integers are selected does not matter, from the positive
integers not exceeding 30.

Solution. Here, the sample space S is the set of all possible ways to choose six integers (without
repetition) from the set {1, 2, . . . , 30}. There are by definition

(
30
6

)
ways to do so. We want to find

the probability of the event E that we choose all six correct numbers. Since there is only one set of
six numbers that’s correct, clearly |E| = 1. Hence,

p(E) =
|E|
|S|

=
1(
30
6

) =
1

593, 775

Problem §7.2 - 5: A pair of dice is loaded. The probability that a 4 appears on the first
die is 2/7, and the probability that a 3 appears on the second die is 2/7. Other outcomes for
each die appear with probability 1/7. What is the probability of 7 appearing as the sum of the
numbers when the two dice are rolled?

Solution. There are 6 ways to get a total of 7: (1, 6), (2, 5), (3, 4), (4, 3), (5, 2), (6, 1). The probability
for each is 1

7 · 1
7 = 1

49 , except for (4, 3), which is 2
7 · 2

7 = 4
49 . So in total, we have

p(E) =
1

7
· 1
7
+

1

7
· 1
7
+

1

7
· 1
7
+

2

7
· 2
7
+

1

7
· 1
7
+

1

7
· 1
7
=

9

49
= 0.1837

Problem §7.3 - 11: An electronics company is planning to introduce a new camera phone.
The company commissions a marketing report for each new product that predicts either the
success or the failure of the product. Of new products introduced by the company, 60% have
been successes. Furthermore, 70% of their successful products were predicted to be successes,
while 40% of failed products were predicted to be successes. Find the probability that this new
camera phone will be successful if its success has been predicted.

Solution. We use Bayes’ Theorem. Let E be the prediction of success, and F be actual success.
Then, p(F ) = 0.6, p(E|F ) = 0.7, p(E|F ) = 0.4, and

p(F |E) =
p(E|F )p(F )

p(E)
=

p(E|F )p(F )

p(E|F )p(F ) + p(E|F )p(F )
=

0.7 · 0.6
0.7 · 0.6 + 0.4 · 0.4

= 0.7241.
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Problem §8.1 - 8:

(a) Find a recurrence relation for the number of bit strings of length n that contain three
consecutive 0s.

(b) What are the initial conditions?

(c) How many bit strings of length seven contain three consecutive 0s?

Solution. This is very similar to the example we did in Lecture 24, where we found a recurrence
relation for the number of binary strings with a pair of consecutive 0s. The only difference is that
now we will need to go back one term further in the sequence and therefore will have a recurrence
relation whose order is higher by one.

(a) Let an denote the number of binary strings of length n that contain three consecutive 0s. Just
like in lecture, we’ll think about counting the number of such strings by breaking the way we
could construct such a string into a few cases. Such strings could:

1. Start with a 1, followed by a string of length n− 1 containing three consecutive 0s.

2. Start with 01, followed by a string of length n− 2 containing three consecutive 0s.

3. Start with 001, followed by a string of length n− 3 containing three consecutive 0s.

4. Start with 000, followed by any binary stringh of length n− 3.

These four cases are mutually exclusive and together contain every possible binary string of
length n with three consecutive 0s. Note that this method of construction is only valid for
n ≥ 3. By counting the number of strings in each case, we can write down the recurrence
relation

an = an−1 + an−2 + an−3 + 2n−3 for n ≥ 3.

(b) We can then determine the initial conditions, i.e. the values of a0, a1, and a2. Since it is not
possible to have three consecutive 0s in a binary string with length less than three, we have

a0 = a1 = a2 = 0.

(c) Finally, we’re asked to compute a7. To do so, we can simply use repeated applications of the
recurrence relation:

a3 = a2 + a1 + a0 + 20 = 0 + 0 + 0 + 1 = 1

a4 = a3 + a2 + a1 + 21 = 1 + 0 + 0 + 2 = 3

a5 = a4 + a3 + a2 + 22 = 3 + 1 + 0 + 4 = 8

a6 = a5 + a4 + a3 + 23 = 8 + 3 + 1 + 8 = 20

a7 = a6 + a5 + a4 + 24 = 20 + 8 + 3 + 16 = 47

Problem §8.2 - 26(a,c): What is the general form of the particular solution guaranteed to
exist by Theorem 6 of the linear nonhomogeneous recurrence relation an = 6an−1 − 12an−2 +
8an−3 + F (n) if

(a) F (n) = n2?

(c) F (n) = n2n?
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Solution. In order to apply Theorem 6, we need to know the characteristic roots of the associated
linear homogeneous recurrence relation, an = 6an−1 − 12an−2 + 8an−3. To determine the char-
acteristic roots, we let an = rn and substitute into the associated linear homogeneous recurrence
relation.

rn = 6rn−1 − 12rn−2 + 8rn−3

r3 = 6r2 − 12r + 8

We then solve for r to find

r3 − 6r2 + 12r − 8 = 0

(r − 2)3 = 0

from which we see that the associated linear homogeneous solution has a single characteristic root,
r0 = 2, with multiplicity 3.

Now, we can deal with finding the particular solutions for the given functions.

(a) Recall that we could instead write F (n) in the form F (n) = n2 · 1n. Because 1 is not a
characteristic root of the associated homogeneous recurrence relation, we know from Theorem
6 that the particular solution has the form

a(p)n = p2n
2 + p1n+ p0,

where p2, p1, and p0 are constants.

(c) Because 2 is a characteristic root with multiplicity 3, we know from Theorem 6 that the
particular solution has the form

a(p)n = (p1n+ p0) · n3 · 2n

Problem §8.5 - 24: Find the probability that when a fair coin is flipped five times tails
comes up exactly three times, the first and last flips come up tails, or the second and fourth
flips come up heads.

Solution. Let S be the sample space, i.e. the set of all possible outcomes when flipping a fair coin
five times. Let E1 be the event that tails comes up exactly three times, E2 be the event that the first
and last flips come up tails, and E3 be the event that the second and fourth flips come up heads.
The problem is then asking us to compute p(E1 ∪ E2 ∪ E3) = |E1 ∪ E2 ∪ E3|/|S|.

Clearly, |S| = 25 since there are exactly two outcomes for each flip (heads or tails). To find
|E1 ∪ E2 ∪ E3|, we can apply the principle of inclusion-exclusion. We know that

|E1 ∪ E2 ∪ E3| = (|E1|+ |E2|+ |E3|)− (|E1 ∩ E2|+ |E2 ∩ E3|+ |E1 ∩ E3|)− |E1 ∩ E2 ∩ E3|

Observe that |E1| =
(
5
3

)
, i.e. the number of ways to choose which three of the five flips come up tails.

To see that |E2| = 23, observe tat the first and last flips are required to be tails and the middle three
flips could be either heads or tails. Similarly, |E3 = 23| because we’re again counting the number of
possible outcomes when two of the flips are fixed.

Next, consider |E1∩E2|. Since two flips are known to be tails, the number of outcomes in |E1∩E2|
is the number of ways to choose the third flip that comes up tails. Hence, |E1 ∩ E2| =

(
3
1

)
= 3.

Next, observe that |E1 ∩ E3| = 1. because only one outcome meets the criteria to belong to both
events - flipping THTHT . Similarly, |E2 ∩ E3| = 2 because there are exactly two outcomes that
meet the criteria for both events -THTHT and THHHT . Finally, |E1 ∩E2 ∩E3| = 1 because only
the outcome THTHT meets the criteria to belong to all three events.
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Plugging these values into our formula, we compute

|E1 ∪ E2 ∪ E3| = (|E1|+ |E2|+ |E3|)− (|E1 ∩ E2|+ |E2 ∩ E3|+ |E1 ∩ E3|)− |E1 ∩ E2 ∩ E3|

=

((
5

3

)
+ 23 + 23

)
− (3 + 1 + 2) + 1

= 21

and therefore

p(E1 ∪ E2 ∪ E3) =
|E1 ∪ E2 ∪ E3|

|S|
=

21

32
.

Problem §8.6 - 16: A group of n students is assigned seats for each of two classes in the
same classroom. How many ways can these seats be assigned if no student is assigned the same
seat for both classes?

Solution. This is a derangement problem. When students choose seats in their first class, which
they can do in n! ways, the numbers 1, . . . , n are assigned to the chairs based on the student who
sits there (i.e., the chair where student i sits in the first class is labeled ′i′). We then want to count
the number of ways that the chairs can be reassigned for the second class such that student i is not
sitting in chair i, for all 1 ≤ i ≤ n. We recognize this as the number of derangements of n objects,
i.e. Dn. Hence,(

number of seat assignments such that no
student is assigned the same seat in both classes

)
= n! ·Dn

= (n!)2 ·
[
1− 1

1!
+

1

2!
− 1

3!
+ · · ·+ (−1)n · 1

n!

]


