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Problem §8.1 - 12:

(a) Find a recurrence relation for the number of ways to climb n stairs if the person climbing
the stairs can take one, two, or three at a time.

(b) What are the initial conditions?

(c) In how many ways can this person climb a flight of eight stairs?

Solution. Let an denote the number of ways to climb n stairs.

(a) For n ≥ 3, we can break the set of ways to climb n stairs into the following cases:

1. We can start by climbing a single stair, then climb the remaining n − 1 stairs in one of
an−1 ways.

2. We can start by climbing two stairs at once, then climb the remaining n− 2 stairs in one
of an−2 ways.

3. We can start by climbing three stairs at once, tehn climb the remaining n − 3 stairs in
one of an−3 ways.

These cases are mutually exclusive and together include all possible methods of climbing n
stairs. From this breakdown, we can write a recurrence relation for an as

an = an−1 + an−2 + an−3.

(b) Next, we can determine initial conditions. There is only one way to climb no stairs (i.e., do
nothing), so a0 = 1. Likewise, there is only one way to climb a single stair so a1 = 1. A set
of two stairs can be climbed in two ways (either taking one step twice or two steps once), so
a2 = 2.

(c) This part asks us to compute a8. Using repeated applications of the recurrence relation, we
find

a3 = a2 + a1 + a0 = 2 + 1 + 1 = 4

a4 = a3 + a2 + a1 = 4 + 2 + 1 = 7

a5 = a4 + a3 + a2 = 7 + 4 + 2 = 13

a6 = a5 + a4 + a3 = 13 + 7 + 4 = 24

a7 = a6 + a5 + a4 = 24 + 13 + 7 = 44

a8 = a7 + a6 + a5 = 44 + 24 + 13 = 81

Problem §8.1 - 20: A bus driver pays all tolls, using only nickels and dimes, by throwing
one coin at a time into the mechanical toll collector.

(a) Find a recurrence relation for the number of different ways the bus driver can pay a toll
of n cents (where the order in which the coins are used matters).

(b) In how many different ways can the driver pay a toll of 45 cents?

Solution. Let an denote the number of ways to pay a toll of 5n cents. This notation is appropriate
for the problem because it’s only possible to pay a toll that is a multiple of 5 cents if the driver is
using only nickles and dimes, which are respectively worth 5 and 10 cents.

(a) We can break the number of ways to pay a toll of 5n cents into two cases:
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1. The driver could first use a nickel, then pay the remaining 5n− 5 = 5(n− 1) cents using
some combination of nickels and dimes.

2. The driver could first use a dime, then pay teh remaining 5n− 10 = 5(n− 2) cents using
some combination of nickels and dimes.

Because these cases are mutually exclusive and together describe every way that the driver
could pay using nickels and dimes, this suggests the recurrence relation

an = an−1 + an−2 for n ≥ 2.

The appropriate initial conditions are a0 = a1 = 1, since there is exactly one way to pay no
toll (do nothing) and one way to pay a toll of 5 cents (use one nickel).

(b) We’re asked to find the number of ways to pay a toll of 45 = 5(9) cents, i.e. to compute a9.
Iterating,

a2 = a1 + a0 = 1 + 1 = 2

a3 = a2 + a1 = 2 + 1 = 3

a4 = a3 + a2 = 3 + 2 = 5

a5 = a4 + a3 = 5 + 3 = 8

a6 = a5 + a4 = 8 + 5 = 13

a7 = a6 + a5 = 13 + 8 = 21

a8 = a7 + a6 = 21 + 13 = 34

a9 = a8 + a7 = 21 + 34 = 55

(Aside: Do you recognize this famous sequence?)

Problem §8.1 - 26:

(a) Find a recurrence relation for the number of ways to completely cover a 2×n checkerboard
with 1× 2 dominoes.

(b) What are the initial conditions for the recurrence relation in part (a)?

(c) How many ways are there to completely cover a 2×17 checkerboard with 1×2 dominoes?

Solution. Let an denote the number of ways to completely cover a 2 × n checkerboard with 1 × 2
dominoes.

(a) We can use the strategy suggested in the hint in the textbook and break the set of ways to
tile a 2× n checkerboard into two cases, for n ≥ 2:

1. The right-most domino is positioned vertically, so the nth column is filled and we need to
tile the remaining 2× (n− 1) board with dominoes. We can do so in an−1 ways.

2. The right-most domino is positioned horizontally. In this case, there must be a second
horizontal domino beneath it so the nth and (n− 1)st columsn are filled and we need to
tile the remaining 2× (n− 2) board using dominoes. We can do so in an−2 ways.

This suggests the recurrence relation an = an−1 + an−2 (the Fibonacci recurrence!).

(b) We can then determine initial conditions. There is exactly one way to tile a 1 × 2 board
(with one vertical domino) and two ways to tile a 2 × 2 board (two vertical dominoes or two
horizontal dominoes). Hence, a1 = 1 and a2 = 2.
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(c) This part is asking us to compute a17. We could do this by iteration, but we can also cheat
by recognizing this sequence as the Fibonacci sequence:

1, 2, 3, 5, 8, 13, 21, 34, 55, 144, 233, 377, 610, 9871597, 2584, · · ·

and simply read off that a17 = 2584.

Problem §8.2 - 2: Classify each recurrence relation by stating (i) whether it is linear or
nonlinear, (ii) whether it is homogeneous or nonhomogeneous, (iii) its order, and (iv) if it has
constant coefficients.

(a) an = 3an−2

(b) an = 3

(c) an = a2n−1

(d) an = an−1 + 2an−3

(e) an = an−1/n

(f) an = an−1 + an−2 + n+ 3

(g) an = 4an−2 + 5an−4 + 9an−7

Solution. Based on the definitions given in lecture and in the textbook, we can classify these recur-
rence relations as:

(a) Linear, homogeneous, constant coefficients, order 2

(b) Linear, nonhomogeneous, constant coefficients, order 0

(c) Not linear, homogeneous, constant coefficients, order 1

(d) Linear, homogeneous, constant coefficients, order 3

(e) Linear, homogeneous, non-constant coefficients, order 1

(f) Linear, nonhomogeneous, constant coefficients, order 2

(g) Linear, homogeneous, constant coefficients, order 7

Problem §8.2 - 4(a,d,e): Solve each recurrence relation along with the given initial condi-
tions.

(a) an = an−1 + 6an−2 for n ≥ 2, a0 = 3, a1 = 6

(d) an = 2an−1 − an−2 for n ≥ 2, a0 = 4, a1 = 1

(e) an = an−2 for n ≥ 2, a0 = 5, a1 = −1

Solution. For each part, we follow the same general procedure: we find the characteristic equation
and characteristic roots, write down the general solution, use the initial conditions to solve for the
arbitrary constants in the general solution, and then write down the unique solution to the recurrence
relation and given initial conditions.

Notice that each recurrence relation is a linear homogeneous recurrence relation with constant
coefficients.
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(a) Assume an = rn for some constant r. Substituting into the recurrence relation, we can compute
the characteristic equation as

rn = rn−1 + 6rn−2

r2 = r + 6

0 = r2 − r − 6

0 = (r − 3)(r + 2)

From this, we observe that there are two characteristic roots r1 = 3 and r2 = −2, each of
which have multiplicity one. Hence, the general solution has form

an = α1 · (−2)n + α2 · 3n.

Substituting for the initial conditions, we obtain the system of equations

(n = 0) α1 + α2 = a0 = 3

(n = 1) − 2α1 + 3α2 = a1 = 6

Solving for α1 and α2, we find that α1 = 3/5 and α2 = 12/5. Hence,

an =
3

5
· (−2)n +

12

5
· 3n.

(d) Assume an = rn for some constant r. We can then compute the characteristic equation as

rn = 2rn−1 − rn−2

r2 = 2r − 1

0 = r2 − 2r + 1

0 = (r − 1)2

Observe that there is a single characteristic root r0 = −1 with multiplicity two. Hence, the
general solution has form

an = α1 · 1n + α2 · n · 1n = α1 + α2n.

Substituting for the initial conditions, we obtain the system of equations

(n = 0) α1 = a0 = 4

(n = 1) α1 + α2 = a1 = 1

from which we find α1 = 4 and α2 = 1− α1 = 1− 4 = −3. Hence,

an = 4− 3n

(e) Assume that an = rn for some constant r. We can then compute the characteristic equation
as

rn = rn−2

r2 = 1

0 = r2 − 1

0 = (r + 1)(r − 1)

Observe that there are two distinct characteristic roots, r1 = −1 and r2 = 1, each of which
have multiplicity one. Hence, the general solution has the form

an = α1 · (−1)n + α2 · 1n = α1 · (−1)n + α2.
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Substituting for the initial conditions, we obtain the system of equations

(n = 0) α1 + α2 = a0 = 5

(n = 1) − α1 + α2 = a1 = −1

Adding these equations together, we find that

2α2 = 5 + (−1) = 4

and therefore α2 = 2 and α1 = 5− α2 = 5− 2 = 3. Hence,

an = 3 · (−1)n + 2.

Problem §8.2 - 28:

(a) Find all solutions of the recurrence relation an = 2an−1 + 2n2.

(b) Find all solutions of the recurrence relation in part (a) with initial condition a1 = 4.

Solution. (a) The associated linear homogeneous recurrence relation is an = 2an−1. Substituting
for an = rn, we can find the characteristic root(s):

an = 2an−1

rn = 2rn−1

r = 2

Observe that there is a single characteristic root, with multiplicity one. Hence, we have

a
(h)
n = α · 2n, where α is a constant.

Next, we can find the particular solution. Observe that we could rewrite the given function as
F (n) = 2 · n2 · 1n. Because 1 is not a characteristic root, we know from Theorem 6 that the
particular solution has form

a(p)n = (p2n
2 + p1n+ p0) · 1n = p2n

2 + p1n+ p0

Now, we need to solve for the constants p2, p1, and p0. We can do so by first plugging the
particular solution into the nonhomogeneous recurrence relation:

p2n
2 + p1n+ p0 = 2

(
p2(n− 1)2 + p1(n− 1) + p0

)
+ 2n2

Simplifying and grouping like terms, we find:

−(p2 + 2)n2 + (4p2 − p1)n+ (−2p2 + 2p1 − p0) = 0

Equating like coefficients on the LHS and RHS, we obtain the system of equations

p2 + 2 = 0

4p2 − p1 = 0

−2p2 + 2p1 − p0 = 0

From the first equation, we see that p2 = −2. Plugging this into the second equation, we find
that p1 = 4p2 = −8. Finally, from the third equation we observe that p0 = 2p1 − 2p2 = −12.
Hence, our particular solution is

a(p)n = −(2n2 + 8n+ 12)

and the general solution is

an = a(h)n + a(p)n = α · 2n − (2n2 + 8n+ 12)

(Note: We can’t solve for α unless we’re given an initial condition.)
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(b) Now that we’ve been given the initial condition a1 = 4, we can solve for the unknown constant
α in the general solution that we found in (a). To do so, we first substitute for the given initial
condition

a1 = 4 = α · 21 − (2 · 12 + 8 · 1 + 12) = 2α− 22

and then solve for α, to find α = 13. Hence, the solution to the given nonhomogeneous linear
recurrence relation with the given initial condition is

an = 13 · 2n − (2n2 + 8n+ 12).

Problem §8.5 - 5: Find the number of elements in A1 ∪A2 ∪A3 if there are 100 elements in
each set and if

(a) the sets are pairwise disjoint.

(b) there are 50 common elements in each pair of sets and no elements in all three sets.

(c) there are 50 common elements in each pair of sets and 25 elements in all three sets.

(d) the sets are equal.

Solution. For any triple of sets A1, A2, A3, we know by the principle of inclusion-exclusion that

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|+ |A1 ∩A2 ∩A3|.

In each part, we simply determine the cardinality of each of the sets on the RHS and then use the
above formula to compute |A1 ∪A2 ∪A3|.

(a) If the sets are pairwise disjoint, then we know that |A1 ∩ A2| = |A2 ∩ A3| = |A2 ∩ A3| =
|A1 ∩A2 ∩A3| = 0 and our formula reduces to

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| = 100 + 100 + 100 = 300

(b) Now, we’re told that |A1 ∩A2| = |A2 ∩A3| = |A2 ∩A3| = 50 and |A1 ∩A2 ∩A3| = 0, hence

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|
= 3 · 100− 3 · 50
= 150

(c) Now, we’re told that |A1 ∩A2| = |A2 ∩A3| = |A2 ∩A3| = 50 and |A1 ∩A2 ∩A3| = 25, hence

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|+ |A1 ∩A2 ∩A3|
= 3 · 100− 3 · 50 + 25

= 175

(d) We can answer this question in two ways. On one hand, we could simply observe that if
A1 = A2 = A3, then |A1 ∪ A2 ∪ A3| = |A1| = |A2| = |A3| = 100. On the other hand, suppose
that we wanted to use the PIE formula. Then we could observe that |A1 ∩A2| = |A1 ∩A3| =
|A2 ∩A3| = |A1 ∩A2 ∩A3| = 100 and therefore

|A1 ∪A2 ∪A3| = |A1|+ |A2|+ |A3| − |A1 ∩A2| − |A1 ∩A3| − |A2 ∩A3|+ |A1 ∩A2 ∩A3|
= 3 · 100− 3 · 100 + 100

= 100
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Problem §8.5 - 10: Find the number of positive integers not exceeding 100 that are not
divisible by 5 or 7.

Solution. Let E1 be the set of positive integers not exceeding 100 that are divisible by 5 and E2 be
the set of positive integers not exceeding 100 that are divisible by 7. We wish to find |E1 ∪ E2|. To do
so, we’ll make use of the fact that |E1 ∪ E2| = 100−|E1∪E2|. By the principle of inclusion-exclusion,
we know that

|E1 ∪ E2| = |E1|+ |E2| − |E1 ∩ E2|,

hence
|E1 ∪ E2| = 100− |E1| − |E2|+ |E1 ∩ E2|

Observe that |E1| = ⌊100/5⌋ = 20, |E2| = ⌊100/7⌋ = 14, and |E1 ∩ E2| = ⌊100/(5 · 7)⌋ = 2.
Substituting for these values, we find

|E1 ∪ E2| = 100− |E1| − |E2|+ |E1 ∩ E2| = 100− 20− 14 + 2 = 68

Problem §8.5 - 14: How many permutations of the 26 letters of the English alphabet do not
contain any of the strings fish, rat, or bird?

Solution. Let E1, E2, and E3 be the sets of permutations containing, respectively, the strings fish,
rat, and bird. The problem is then asking us to find |E1 ∪ E2 ∪ E3|. Again, we’ll use the fact that

|E1 ∪ E2 ∪ E3| =
(

total number of permutations of the
26 letters of the English alphabet

)
− |E1 ∪ E2 ∪ E3|

= 26!− |E1 ∪ E2 ∪ E3|

From the principle of inclusion-exclusion, we know that

|E1 ∪ E2 ∪ E3| = (|E1|+ |E2|+ |E3|)− (|E1 ∩ E2|+ |E2 ∩ E3|+ |E1 ∩ E3|) + |E1 ∩ E2 ∩ E3|.

To find |E1|, let the four letters in fish to be a glued superletter or block and count the number of
permutations of that superletter and the remaining twenty-two ordinary letters. Hence, |E1| = 23!.
By the same argument, |E2| = 24! and |E3| = 23!. To find |E1 ∩ E2|, we can form two superletters
by gluing together fish and rat and then permute these superletters and the remaining 20 normal
letters. Hence, |E1 ∩ E2| = 21!. Because fish and bird share the letter i and it’s therefore not
possible for a permutation to contain both strings, |E1 ∩ E3| = 0. Similarly, |E2 ∩ E3| = 0 and
|E1 ∩ E2 ∩ E3| = 0. Therefore,

|E1 ∪ E2 ∪ E3| = 2 · 23! + 24!− 21!

and
|E1 ∪ E2 ∪ E3| = 26!− 2 · 23!− 24! + 21!

Problem §8.5 - 20: How many elements are in the union of five sets if the sets contain
10,000 elements each, each pair of sets has 1,000 common elements, each triple of sets has 100
common elements, every four of the sets have 10 common elements, and there is 1 element in
all five sets?

Solution. This is a simple application of the principle of inclusion-exclusion to compute the cardinal-
ity of the union of five sets E1, E2, E3, E4, and E5. We’re told that |Ei| = 10, 000, |Ei∩Ej | = 1, 000,
|Ei ∩ Ej ∩ Ek| = 100, |Ei ∩ Ej ∩ Ek ∩ Eℓ| = 10, and |E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5 = 1.
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Using the principle of inclusion-exclusion, we can compute

|E1 ∪ E2 ∪ E3 ∪ E4 ∪ E5| =

 ∑
1≤i≤5

|Ei|

−

 ∑
1≤i<j≤5

|Ei ∩ Ej |

+

 ∑
1≤i<j<j≤5

|Ei ∩ Ej ∩ Ek|


−

 ∑
1≤i<j<k<ℓ≤5

|Ei ∩ Ej ∩ Ek ∩ Eℓ|

+ |E1 ∩ E2 ∩ E3 ∩ E4 ∩ E5|

= 5 · 10, 000−
(
5

2

)
· 1, 000 +

(
5

3

)
· 100−

(
5

4

)
· 10 + 1

= 40, 951


